Fourier series 1

Post on 05-Dec-2014

1.700 views 0 download

description

 

Transcript of Fourier series 1

Fourier Series

N. B. Vyas

Department of Mathematics,Atmiya Institute of Tech. and Science,

Rajkot (Guj.) - INDIA

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Periodic Function

A function f(x) which satisfies the relation f(x) = f(x+ T ) forall real x and some fixed T is called Periodic function.

The smallest positive number T , for which this relation holds, iscalled the period of f(x).

If T is the period of f(x) then

f(x) = f(x+ T ) = f(x+ 2T ) = . . . = f(x+ nT )

f(x) = f(x− T ) = f(x− 2T ) = . . . = f(x− nT )

∴ f(x) = f(x± nT ), where n is a positive integer

Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period2π

tanx and cotx are periodic functions with period π.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).Eg. x3 and sinx are odd function.∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.

∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).Eg. x3 and sinx are odd function.∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).Eg. x3 and sinx are odd function.∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).

Eg. x3 and sinx are odd function.∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).Eg. x3 and sinx are odd function.

∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Even & Odd functions

A function f(x) is said to be even if f(−x) = f(x).

Eg. x2 and cosx are even function.∫ c

−cf(x)dx = 2

∫ c

0

f(x)dx ; if f(x) is an even function.

A function f(x) is said to be odd if f(−x) = −f(x).Eg. x3 and sinx are odd function.∫ c

−cf(x)dx = 0 ; if f(x) is an odd function.

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c

∫eax cos bx dx =

eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c

∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0

∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0

∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx) + c∫

eax cos bx dx =eax

a2 + b2(a cosbx+ b sinbx) + c∫ c+2π

c

sin nx dx = −[cos nx

n

]c+2π

c= 0, n 6= 0∫ c+2π

c

cos nx dx =

[sin nx

n

]c+2π

c

= 0, n 6= 0∫ c+2π

c

sinmx cos nx dx =1

2

∫ c+2π

c

2sinmx cos nx dx

=1

2

∫ c+2π

c

[sin (m+ n)x+ sin (m− n)x] dx

= −1

2

[cos (m+ n)x

m+ n+cos (m− n)x

m− n

]c+2π

c

= 0, n 6= 0

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx

= 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx

= 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0

∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx

= π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π

∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx

= π

N. B. Vyas Fourier Series

Some Important Formula∫ c+2π

c

cosmx cos nx dx = 12

∫ c+2π

c

2cosmx cos nx dx

= 12

∫ c+2π

c

[cos (m+ n)x+ cos (m− n)x] dx

= 12

[sin (m+ n)x

m+ n+sin (m− n)x

m− n

]c+2π

c

= 0,m 6= n∫ c+2π

c

sinmx sin nx dx = 0∫ c+2π

c

sin nx cos nx dx = 0, n 6= 0∫ c+2π

c

cos2 nx dx = π∫ c+2π

c

sin2 nx dx = π

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)

= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0

and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n

and cos(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Some Important Formula

(Leibnitz’s Rule)To integrate the product of twofunctions, one of which is power of x . We apply thegeneralized rule of integration by parts∫u vdx = u v1 − u′ v2 + u′′ v3 − u′′′ v4 + . . .

Eg.

∫x3 e−2x dx

= x3(e−2x

−2

)− 3x2

(e−2x

(−2)2

)+ 6x

(e−2x

(−2)3

)− 6

(e−2x

(−2)4

)= −1

8e−2x (4x3 + 6x2 + 6x+ 3)

sin nπ = 0 and cos nπ = (−1)n

sin(n+ 1

2

)π = (−1)n and cos

(n+ 1

2

)π = 0

where n is integer.

N. B. Vyas Fourier Series

Fourier Series

The Fourier series for the function f(x) in the intervalc < x < c+ 2π is given by

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ c+2π

c

f(x) dx

an =1

π

∫ c+2π

c

f(x) cos nx dx

bn =1

π

∫ c+2π

c

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

The Fourier series for the function f(x) in the intervalc < x < c+ 2π is given by

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ c+2π

c

f(x) dx

an =1

π

∫ c+2π

c

f(x) cos nx dx

bn =1

π

∫ c+2π

c

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

The Fourier series for the function f(x) in the intervalc < x < c+ 2π is given by

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ c+2π

c

f(x) dx

an =1

π

∫ c+2π

c

f(x) cos nx dx

bn =1

π

∫ c+2π

c

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

The Fourier series for the function f(x) in the intervalc < x < c+ 2π is given by

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ c+2π

c

f(x) dx

an =1

π

∫ c+2π

c

f(x) cos nx dx

bn =1

π

∫ c+2π

c

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

The Fourier series for the function f(x) in the intervalc < x < c+ 2π is given by

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ c+2π

c

f(x) dx

an =1

π

∫ c+2π

c

f(x) cos nx dx

bn =1

π

∫ c+2π

c

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 1: If c = 0, the interval becomes 0 < x < 2π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 1: If c = 0, the interval becomes 0 < x < 2π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 1: If c = 0, the interval becomes 0 < x < 2π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 1: If c = 0, the interval becomes 0 < x < 2π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 1: If c = 0, the interval becomes 0 < x < 2π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 2: If c = −π, the interval becomes −π << π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 2: If c = −π, the interval becomes −π << π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 2: If c = −π, the interval becomes −π << π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 2: If c = −π, the interval becomes −π << π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Corollary 2: If c = −π, the interval becomes −π << π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 1: If the interval is −c < x < c and f(x) is anodd function i.e. f(−x) = −f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx = 0

an =1

π

∫ π

−πf(x) cos nx dx = 0

because cos nx is an even function , f(x)cos nx is an oddfunction

bn =1

π

∫ π

−πf(x) sin nx dx =

2

π

∫ π

0

f(x) sin nx dx

because sin nx is an odd function , f(x)sin nx is an evenfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Fourier Series

Special Case 2: If the interval is −c < x < c and f(x) is aneven function i.e. f(−x) = f(x). Let C = π

f(x) =a02

+∞∑n=1

an cos nx+∞∑n=1

bn sin nx

where a0 =1

π

∫ π

−πf(x) dx =

2

π

∫ π

0

f(x) dx

an =1

π

∫ π

−πf(x) cos nx dx =

2

π

∫ π

0

f(x) cos nx dx

because cos nx is an even function , f(x)cos nx is an evenfunction

bn =1

π

∫ π

−πf(x) sin nx dx = 0

because sin nx is an odd function , f(x)sin nx is an oddfunction

N. B. Vyas Fourier Series

Example

Ex. Obtain Fourier series of f(x) =

(π − x2

)2

in the

interval 0 ≤ x ≤ 2π. Hence deduce thatπ2

12=

1

12− 1

22+

1

32− . . .

N. B. Vyas Fourier Series

Example

Ex. Obtain Fourier series of f(x) =

(π − x2

)2

in the

interval 0 ≤ x ≤ 2π. Hence deduce thatπ2

12=

1

12− 1

22+

1

32− . . .

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

(π − x)2

4dx

=1

[(π − x)3

(−3)

]2π0

= − 1

12π(−π3 − π3)

=π2

6

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

(π − x)2

4dx

=1

[(π − x)3

(−3)

]2π0

= − 1

12π(−π3 − π3)

=π2

6

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

(π − x)2

4dx

=1

[(π − x)3

(−3)

]2π0

= − 1

12π(−π3 − π3)

=π2

6

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

(π − x)2

4dx

=1

[(π − x)3

(−3)

]2π0

= − 1

12π(−π3 − π3)

=π2

6

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

(π − x)2

4cos nx dx

=1

n2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

(π − x)2

4cos nx dx

=1

n2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

(π − x)2

4cos nx dx

=1

n2

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

(π − x)2

4sin nx dx

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

(π − x)2

4sin nx dx

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

(π − x)2

4sin nx dx

= 0

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π]

(π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π](π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π](π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π](π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π](π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π](π − x2

)2

=π2

12+∞∑n=1

1

n2cos nx

=π2

12+

1

12cos x+

1

22cos 2x+

1

32cos 3x+ . . .

Putting x = π, we get

0 =π2

12− 1

12+

1

22− 1

32+

1

42− . . .

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series

Example

Ex. Expand in a Fourier series the function f(x) = xin the interval 0 ≤ x ≤ 2π.

N. B. Vyas Fourier Series

Example

Ex. Expand in a Fourier series the function f(x) = xin the interval 0 ≤ x ≤ 2π.

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x dx

=1

[x2

2

]2π0

= 2π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x dx

=1

[x2

2

]2π0

= 2π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x dx

=1

[x2

2

]2π0

= 2π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x dx

=1

[x2

2

]2π0

= 2π

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x cos nx dx[x

(sin nx

n

)−(−cos nx

n

)]2π0

= 0

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x cos nx dx

[x

(sin nx

n

)−(−cos nx

n

)]2π0

= 0

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x cos nx dx[x

(sin nx

n

)−(−cos nx

n

)]2π0

= 0

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x cos nx dx[x

(sin nx

n

)−(−cos nx

n

)]2π0

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

x sin nx dx

=−2n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

x sin nx dx

=−2n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

bn =1

π

∫ 2π

0

x sin nx dx

=−2n

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π]

f(x) =2π

2+ 0 +

∞∑n=1

−2nsin nx

= π −∞∑n=1

sin nx

n

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π]

f(x) =2π

2+ 0 +

∞∑n=1

−2nsin nx

= π −∞∑n=1

sin nx

n

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π]

f(x) =2π

2+ 0 +

∞∑n=1

−2nsin nx

= π −∞∑n=1

sin nx

n

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval [0, 2π]

f(x) =2π

2+ 0 +

∞∑n=1

−2nsin nx

= π −∞∑n=1

sin nx

n

N. B. Vyas Fourier Series

Example

Ex. Determine the Fourier series expansion of thefunction f(x) = xsin x in the interval 0 ≤ x ≤ 2π.

N. B. Vyas Fourier Series

Example

Ex. Determine the Fourier series expansion of thefunction f(x) = xsin x in the interval 0 ≤ x ≤ 2π.

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ 2π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x sin x dx

=1

π[−x cos x+ sin x]2π0

=1

π(−2 π cos 2π + sin 2π − 0 + sin 0)

a0 =−2ππ

= −2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x sin x dx

=1

π[−x cos x+ sin x]2π0

=1

π(−2 π cos 2π + sin 2π − 0 + sin 0)

a0 =−2ππ

= −2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x sin x dx

=1

π[−x cos x+ sin x]2π0

=1

π(−2 π cos 2π + sin 2π − 0 + sin 0)

a0 =−2ππ

= −2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x sin x dx

=1

π[−x cos x+ sin x]2π0

=1

π(−2 π cos 2π + sin 2π − 0 + sin 0)

a0 =−2ππ

= −2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

a0 =1

π

∫ 2π

0

x sin x dx

=1

π[−x cos x+ sin x]2π0

=1

π(−2 π cos 2π + sin 2π − 0 + sin 0)

a0 =−2ππ

= −2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x sin x cos nx dx

=1

∫ 2π

0

x (2 sin x cos nx) dx

=1

∫ 2π

0

x (sin (n+ 1)x − sin (n− 1)x) dx

=1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x sin x cos nx dx

=1

∫ 2π

0

x (2 sin x cos nx) dx

=1

∫ 2π

0

x (sin (n+ 1)x − sin (n− 1)x) dx

=1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x sin x cos nx dx

=1

∫ 2π

0

x (2 sin x cos nx) dx

=1

∫ 2π

0

x (sin (n+ 1)x − sin (n− 1)x) dx

=1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x sin x cos nx dx

=1

∫ 2π

0

x (2 sin x cos nx) dx

=1

∫ 2π

0

x (sin (n+ 1)x − sin (n− 1)x) dx

=1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 2π

0

f(x) cos nx dx

an =1

π

∫ 2π

0

x sin x cos nx dx

=1

∫ 2π

0

x (2 sin x cos nx) dx

=1

∫ 2π

0

x (sin (n+ 1)x − sin (n− 1)x) dx

=1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n = 1

∴ a1 =1

∫ 2π

0

x sin 2x dx

=1

[−x(cos 2x

2

)+sin 2x

4

]2π0

= −1

2

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n = 1

∴ a1 =1

∫ 2π

0

x sin 2x dx

=1

[−x(cos 2x

2

)+sin 2x

4

]2π0

= −1

2

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n = 1

∴ a1 =1

∫ 2π

0

x sin 2x dx

=1

[−x(cos 2x

2

)+sin 2x

4

]2π0

= −1

2

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n = 1

∴ a1 =1

∫ 2π

0

x sin 2x dx

=1

[−x(cos 2x

2

)+sin 2x

4

]2π0

= −1

2

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n = 1

∴ a1 =1

∫ 2π

0

x sin 2x dx

=1

[−x(cos 2x

2

)+sin 2x

4

]2π0

= −1

2

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]=

2

n2 − 1

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]=

2

n2 − 1

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]=

2

n2 − 1

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]=

2

n2 − 1

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]

=2

n2 − 1

N. B. Vyas Fourier Series

Example

an =1

∫ 2π

0

x sin (n+ 1)x dx− 1

∫ 2π

0

x sin (n− 1)x dx

If n 6= 1

∴ an =1

[x

(−cos (n+ 1)x

n+ 1

)−(−sin (n+ 1)x

(n+ 1)2

)]2π0

− 1

[x

(−cos (n− 1)x

n− 1

)−(−sin (n− 1)x

(n− 1)2

)]2π0

=1

[− 2π

n+ 1+ 0 +

n− 1− 0

]=

2

n2 − 1

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

∫ 2π

0

x sin x sin nx dx

=1

∫ 2π

0

x (2sin nx sin x) dx

=1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

∫ 2π

0

x sin x sin nx dx

=1

∫ 2π

0

x (2sin nx sin x) dx

=1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

∫ 2π

0

x sin x sin nx dx

=1

∫ 2π

0

x (2sin nx sin x) dx

=1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

∫ 2π

0

x sin x sin nx dx

=1

∫ 2π

0

x (2sin nx sin x) dx

=1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n = 1

∴ b1 =1

∫ 2π

0

(−x cos 2x) dx+ 1

∫ 2π

0

x dx

=1

[x

(−sin 2x

2

)− cos 2x

4+x2

2

]2π0

b1 = π

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n = 1

∴ b1 =1

∫ 2π

0

(−x cos 2x) dx+ 1

∫ 2π

0

x dx

=1

[x

(−sin 2x

2

)− cos 2x

4+x2

2

]2π0

b1 = π

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n = 1

∴ b1 =1

∫ 2π

0

(−x cos 2x) dx+ 1

∫ 2π

0

x dx

=1

[x

(−sin 2x

2

)− cos 2x

4+x2

2

]2π0

b1 = π

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n = 1

∴ b1 =1

∫ 2π

0

(−x cos 2x) dx+ 1

∫ 2π

0

x dx

=1

[x

(−sin 2x

2

)− cos 2x

4+x2

2

]2π0

b1 = π

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n = 1

∴ b1 =1

∫ 2π

0

(−x cos 2x) dx+ 1

∫ 2π

0

x dx

=1

[x

(−sin 2x

2

)− cos 2x

4+x2

2

]2π0

b1 = π

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n 6= 1

∴ bn =1

[x

(−sin (n+ 1)x

n+ 1

)−(cos (n+ 1)x

(n+ 1)2

)]2π0

+1

[x

(sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2

)]2π0

= 0

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n 6= 1

∴ bn =1

[x

(−sin (n+ 1)x

n+ 1

)−(cos (n+ 1)x

(n+ 1)2

)]2π0

+1

[x

(sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2

)]2π0

= 0

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n 6= 1

∴ bn =1

[x

(−sin (n+ 1)x

n+ 1

)−(cos (n+ 1)x

(n+ 1)2

)]2π0

+1

[x

(sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2

)]2π0

= 0

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n 6= 1

∴ bn =1

[x

(−sin (n+ 1)x

n+ 1

)−(cos (n+ 1)x

(n+ 1)2

)]2π0

+1

[x

(sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2

)]2π0

= 0

N. B. Vyas Fourier Series

Example

bn =1

∫ 2π

0

x (−cos (n+ 1)x + cos (n− 1)x) dx

If n 6= 1

∴ bn =1

[x

(−sin (n+ 1)x

n+ 1

)−(cos (n+ 1)x

(n+ 1)2

)]2π0

+1

[x

(sin (n− 1)x

n− 1

)+

(cos (n− 1)x

(n− 1)2

)]2π0

= 0

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, a1, an(n > 1), b1 andbn(n > 1) in (1), we get the required Fourier series of f(x) inthe interval [0, 2π]

f(x) =−22

+∞∑n=1

(an cos nx+ bn sin nx)

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, a1, an(n > 1), b1 andbn(n > 1) in (1), we get the required Fourier series of f(x) inthe interval [0, 2π]

f(x) =−22

+∞∑n=1

(an cos nx+ bn sin nx)

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, a1, an(n > 1), b1 andbn(n > 1) in (1), we get the required Fourier series of f(x) inthe interval [0, 2π]

f(x) =−22

+∞∑n=1

(an cos nx+ bn sin nx)

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= −π;−π < x < 0= x; 0 < x < π

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= −π;−π < x < 0= x; 0 < x < π

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ π

−πf(x) dx

an =1

π

∫ π

−πf(x) cos nx dx

bn =1

π

∫ π

−πf(x) sin nx dx

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ π

−πf(x) dx

=1

π

[∫ 0

−πf(x) dx+

∫ π

0

f(x) dx

]=

1

π

[∫ 0

−π(−π) dx+

∫ π

0

x dx

]= −π

2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ π

−πf(x) dx

=1

π

[∫ 0

−πf(x) dx+

∫ π

0

f(x) dx

]

=1

π

[∫ 0

−π(−π) dx+

∫ π

0

x dx

]= −π

2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ π

−πf(x) dx

=1

π

[∫ 0

−πf(x) dx+

∫ π

0

f(x) dx

]=

1

π

[∫ 0

−π(−π) dx+

∫ π

0

x dx

]

= −π2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ π

−πf(x) dx

=1

π

[∫ 0

−πf(x) dx+

∫ π

0

f(x) dx

]=

1

π

[∫ 0

−π(−π) dx+

∫ π

0

x dx

]= −π

2

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ π

−πf(x) dx

=1

π

[∫ 0

−πf(x) dx+

∫ π

0

f(x) dx

]=

1

π

[∫ 0

−π(−π) dx+

∫ π

0

x dx

]= −π

2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 0

−πf(x) cos nx dx+

∫ π

0

f(x) cos nx dx

=1

π

[∫ 0

−π(−π) cos nx dx+

∫ π

0

x cos nx dx

]=

1

π

[−π[sin nx

n

]0−π

+

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

]

=(−1)n − 1

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 0

−πf(x) cos nx dx+

∫ π

0

f(x) cos nx dx

=1

π

[∫ 0

−π(−π) cos nx dx+

∫ π

0

x cos nx dx

]

=1

π

[−π[sin nx

n

]0−π

+

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

]

=(−1)n − 1

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 0

−πf(x) cos nx dx+

∫ π

0

f(x) cos nx dx

=1

π

[∫ 0

−π(−π) cos nx dx+

∫ π

0

x cos nx dx

]=

1

π

[−π[sin nx

n

]0−π

+

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

]

=(−1)n − 1

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 0

−πf(x) cos nx dx+

∫ π

0

f(x) cos nx dx

=1

π

[∫ 0

−π(−π) cos nx dx+

∫ π

0

x cos nx dx

]=

1

π

[−π[sin nx

n

]0−π

+

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

]

=(−1)n − 1

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

∫ 0

−πf(x) cos nx dx+

∫ π

0

f(x) cos nx dx

=1

π

[∫ 0

−π(−π) cos nx dx+

∫ π

0

x cos nx dx

]=

1

π

[−π[sin nx

n

]0−π

+

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

]

=(−1)n − 1

πn2

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

[∫ 0

−πf(x) sin nx dx+

∫ π

0

f(x) sin nx dx

]

=1

π

[∫ 0

−π(−π) sin nx dx+

∫ π

0

x sin nx dx

]=

1

π

[−π[−cosnx

n

]0−π

+

[x

(−cos nx

n

)−(−sin nxn2

)]π0

]

=1− 2(−1)n

n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

[∫ 0

−πf(x) sin nx dx+

∫ π

0

f(x) sin nx dx

]=

1

π

[∫ 0

−π(−π) sin nx dx+

∫ π

0

x sin nx dx

]

=1

π

[−π[−cosnx

n

]0−π

+

[x

(−cos nx

n

)−(−sin nxn2

)]π0

]

=1− 2(−1)n

n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

[∫ 0

−πf(x) sin nx dx+

∫ π

0

f(x) sin nx dx

]=

1

π

[∫ 0

−π(−π) sin nx dx+

∫ π

0

x sin nx dx

]=

1

π

[−π[−cosnx

n

]0−π

+

[x

(−cos nx

n

)−(−sin nxn2

)]π0

]

=1− 2(−1)n

n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

[∫ 0

−πf(x) sin nx dx+

∫ π

0

f(x) sin nx dx

]=

1

π

[∫ 0

−π(−π) sin nx dx+

∫ π

0

x sin nx dx

]=

1

π

[−π[−cosnx

n

]0−π

+

[x

(−cos nx

n

)−(−sin nxn2

)]π0

]

=1− 2(−1)n

n

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

[∫ 0

−πf(x) sin nx dx+

∫ π

0

f(x) sin nx dx

]=

1

π

[∫ 0

−π(−π) sin nx dx+

∫ π

0

x sin nx dx

]=

1

π

[−π[−cosnx

n

]0−π

+

[x

(−cos nx

n

)−(−sin nxn2

)]π0

]

=1− 2(−1)n

n

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (−π, π)

f(x) =−π4

+∞∑n=1

(an cos nx+ bn sin nx)

=−π4

+∞∑n=1

((−1)n − 1

πn2

)cos nx+

∞∑n=1

(1− 2(−1)n

n

)sin nx

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (−π, π)

f(x) =−π4

+∞∑n=1

(an cos nx+ bn sin nx)

=−π4

+∞∑n=1

((−1)n − 1

πn2

)cos nx+

∞∑n=1

(1− 2(−1)n

n

)sin nx

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (−π, π)

f(x) =−π4

+∞∑n=1

(an cos nx+ bn sin nx)

=−π4

+∞∑n=1

((−1)n − 1

πn2

)cos nx+

∞∑n=1

(1− 2(−1)n

n

)sin nx

N. B. Vyas Fourier Series

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (−π, π)

f(x) =−π4

+∞∑n=1

(an cos nx+ bn sin nx)

=−π4

+∞∑n=1

((−1)n − 1

πn2

)cos nx+

∞∑n=1

(1− 2(−1)n

n

)sin nx

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= 2;−π < x < 0= 1; 0 < x < π

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= 2;−π < x < 0= 1; 0 < x < π

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= −k;−π < x < 0= k; 0 < x < π

Hence deduce that 1− 1

3+

1

5− 1

7+ . . . =

π

4

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series for the periodic function

f(x)= −k;−π < x < 0= k; 0 < x < π

Hence deduce that 1− 1

3+

1

5− 1

7+ . . . =

π

4

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series of the function

f(x)= x; 0 ≤ x < π= 2π ;x = π= 2π − x ; π < x < 2π

Hence deduce that3π2

8=

1

12+

1

32+

1

52+ . . .

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Sol. Step 1. The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

(an cos nx+ bn sin nx) . . . (1)

where a0 =1

π

∫ 2π

0

f(x) dx

an =1

π

∫ π

0

f(x) cos nx dx

bn =1

π

∫ 2π

0

f(x) sin nx dx

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

=1

π

[∫ π

0

x dx+

∫ 2π

π

(2π − x) dx]

=1

π

[(x2

2

)π0

+

(2πx− x2

2

)2π

π

]= π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

=1

π

[∫ π

0

x dx+

∫ 2π

π

(2π − x) dx]

=1

π

[(x2

2

)π0

+

(2πx− x2

2

)2π

π

]= π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

=1

π

[∫ π

0

x dx+

∫ 2π

π

(2π − x) dx]

=1

π

[(x2

2

)π0

+

(2πx− x2

2

)2π

π

]

= π

N. B. Vyas Fourier Series

Example

Step 2. Now a0 =1

π

∫ 2π

0

f(x) dx

=1

π

[∫ π

0

x dx+

∫ 2π

π

(2π − x) dx]

=1

π

[(x2

2

)π0

+

(2πx− x2

2

)2π

π

]= π

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

[∫ π

0

f(x) cos nx dx+

∫ 2π

π

f(x) cos nx dx

]

=1

π

[∫ π

0

x cos nx dx+

∫ 2π

π

(2π − x) cos nx dx]

=1

π

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

+1

π

[(2π − x)

(sin nx

n

)− (−1)

(−cos nx

n2

)]2ππ

=1

π

[(0 +

cos nπ

n2

)−(0 +

1

n2

)]+1

π

[(0− cos 2nπ

n2

)−(0− cos nπ

n2

)]=

2 [(−1)n − 1]

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

[∫ π

0

f(x) cos nx dx+

∫ 2π

π

f(x) cos nx dx

]=

1

π

[∫ π

0

x cos nx dx+

∫ 2π

π

(2π − x) cos nx dx]

=1

π

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

+1

π

[(2π − x)

(sin nx

n

)− (−1)

(−cos nx

n2

)]2ππ

=1

π

[(0 +

cos nπ

n2

)−(0 +

1

n2

)]+1

π

[(0− cos 2nπ

n2

)−(0− cos nπ

n2

)]=

2 [(−1)n − 1]

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

[∫ π

0

f(x) cos nx dx+

∫ 2π

π

f(x) cos nx dx

]=

1

π

[∫ π

0

x cos nx dx+

∫ 2π

π

(2π − x) cos nx dx]

=1

π

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

+1

π

[(2π − x)

(sin nx

n

)− (−1)

(−cos nx

n2

)]2ππ

=1

π

[(0 +

cos nπ

n2

)−(0 +

1

n2

)]+1

π

[(0− cos 2nπ

n2

)−(0− cos nπ

n2

)]=

2 [(−1)n − 1]

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

[∫ π

0

f(x) cos nx dx+

∫ 2π

π

f(x) cos nx dx

]=

1

π

[∫ π

0

x cos nx dx+

∫ 2π

π

(2π − x) cos nx dx]

=1

π

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

+1

π

[(2π − x)

(sin nx

n

)− (−1)

(−cos nx

n2

)]2ππ

=1

π

[(0 +

cos nπ

n2

)−(0 +

1

n2

)]+1

π

[(0− cos 2nπ

n2

)−(0− cos nπ

n2

)]=

2 [(−1)n − 1]

πn2

N. B. Vyas Fourier Series

Example

Step 3. an =1

π

[∫ π

0

f(x) cos nx dx+

∫ 2π

π

f(x) cos nx dx

]=

1

π

[∫ π

0

x cos nx dx+

∫ 2π

π

(2π − x) cos nx dx]

=1

π

[x

(sin nx

n

)− (1)

(−cos nx

n2

)]π0

+1

π

[(2π − x)

(sin nx

n

)− (−1)

(−cos nx

n2

)]2ππ

=1

π

[(0 +

cos nπ

n2

)−(0 +

1

n2

)]+1

π

[(0− cos 2nπ

n2

)−(0− cos nπ

n2

)]=

2 [(−1)n − 1]

πn2

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

[∫ π

0

x sin nx dx+

∫ 2π

π

(2π − x) sin nx dx]

=1

π

[x(−cos nx

n

)− (1)

(−sin nx

n2

)]π0

+1

π

[(2π − x)

(−cos nx

n

)− (−1)

(−sin nx

n2

)]2ππ

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

[∫ π

0

x sin nx dx+

∫ 2π

π

(2π − x) sin nx dx]

=1

π

[x(−cos nx

n

)− (1)

(−sin nx

n2

)]π0

+1

π

[(2π − x)

(−cos nx

n

)− (−1)

(−sin nx

n2

)]2ππ

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

[∫ π

0

x sin nx dx+

∫ 2π

π

(2π − x) sin nx dx]

=1

π

[x(−cos nx

n

)− (1)

(−sin nx

n2

)]π0

+1

π

[(2π − x)

(−cos nx

n

)− (−1)

(−sin nx

n2

)]2ππ

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

[∫ π

0

x sin nx dx+

∫ 2π

π

(2π − x) sin nx dx]

=1

π

[x(−cos nx

n

)− (1)

(−sin nx

n2

)]π0

+1

π

[(2π − x)

(−cos nx

n

)− (−1)

(−sin nx

n2

)]2ππ

= 0

N. B. Vyas Fourier Series

Example

Step 4. bn =1

π

∫ 2π

0

f(x) sin nx dx

=1

π

[∫ π

0

x sin nx dx+

∫ 2π

π

(2π − x) sin nx dx]

=1

π

[x(−cos nx

n

)− (1)

(−sin nx

n2

)]π0

+1

π

[(2π − x)

(−cos nx

n

)− (−1)

(−sin nx

n2

)]2ππ

= 0

N. B. Vyas Fourier Series

Example

Ex. Find the Fourier series of

f(x)= −1;−π < x < −π2

= 0 ;−π2 < x < π

2

= 1 ; π2 < x < π

N. B. Vyas Fourier Series