Evolutionary game theory I: Well-mixed populations

Post on 06-Feb-2016

64 views 2 download

Tags:

description

Evolutionary game theory I: Well-mixed populations. Collisional population dynamics. Traditional game theory. +T. +R. p D. 1. +R. +S. +. +S. +P. +T. +P. t. 0. Collisional population events. Collisional population events. R C. R R. R S. R D. R T. R P. C. +. +. C. D. C. - PowerPoint PPT Presentation

Transcript of Evolutionary game theory I: Well-mixed populations

+R

+R +S

+T

+T

+S

+P

+P

Evolutionary game theory I: Well-mixed populations

1

Collisional population dynamics Traditional game theory

0

pD

1

t

+

2

Collisional population events

3

C

D

๐ถ+๐ท ๐‘‡[๐‘ ]

โ†’

๐ถ+2๐ท

๐ถ+๐ท ๐‘†[๐‘ ]

โ†’

2๐ถ+๐ท2๐ถ ๐‘…[๐‘ ]

โ†’

3๐ถ

2๐ท ๐‘ƒ[๐‘ ]

โ†’

3๐ท

๐ถ ๐‘“ 0โ†’

2๐ถ

๐ท ๐‘“ 0โ†’

2๐ท

RC RR RS

RD RT RP

DC C+ +

Collisional population events

๐‘‘๐ท๐‘‘๐‘ก

= ๐œ•๐ท๐œ•๐‘…๐ท

๐‘‘๐‘…๐ท

๐‘‘๐‘ก+ ๐œ•๐ท๐œ• ๐‘…๐‘‡

๐‘‘๐‘…๐‘‡

๐‘‘๐‘ก+ ๐œ•๐ท๐œ•๐‘…๐‘ƒ

๐‘‘๐‘…๐‘ƒ

๐‘‘๐‘ก

๐‘‘๐ถ๐‘‘๐‘ก

= ๐œ•๐ถ๐œ•๐‘…๐ถ

๐‘‘๐‘…๐ถ

๐‘‘๐‘ก+ ๐œ•๐ถ๐œ•๐‘…๐‘…

๐‘‘๐‘…๐‘…

๐‘‘๐‘ก+ ๐œ•๐ถ๐œ•๐‘…๐‘†

๐‘‘๐‘…๐‘†

๐‘‘๐‘ก

4

Collisional population events

๐ถ+๐ท ๐‘‡[๐‘ ]

โ†’

๐ถ+2๐ท

๐ถ+๐ท ๐‘†[๐‘ ]

โ†’

2๐ถ+๐ท2๐ถ ๐‘…[๐‘ ]

โ†’

3๐ถ

2๐ท ๐‘ƒ[๐‘ ]

โ†’

3๐ท

๐ถ ๐‘“ 0โ†’

2๐ถ

๐ท ๐‘“ 0โ†’

2๐ท

RC RR RS

RD RT RP

๐‘“ 0๐ถ+1๐‘…

[๐‘ ] [๐ถ ]๐ถ+1๐‘†

[๐‘ ] [๐ท ]๐ถ+1

๐‘“ 0๐ท+1๐‘‡

[๐‘ ] [๐ถ ]๐ท+1๐‘ƒ

[๐‘ ] [๐ท ]๐ท+1

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท

5

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท

๐‘‘๐‘‘๐‘ก

๐‘๐ท=๐‘‘๐‘‘๐‘ก ( ๐ท

๐ถ+๐ท )=๐‘‘๐ท๐‘‘๐‘ก

(๐ถ+๐ท )โˆ’๐ท ๐‘‘๐‘‘๐‘ก

(๐ถ+๐ท )

(๐ถ+๐ท )2

๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ถ๐‘๐ท [ (๐‘‡ โˆ’๐‘… )๐‘๐ถ+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

๐‘‘๐‘๐ถ

๐‘‘๐‘ก+๐‘‘๐‘๐ท

๐‘‘๐‘ก=0STOP Check that total

probability is conserved

Evolutionary dynamics of demographics

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท

ยฟ๐ถ๐‘‘๐ท๐‘‘๐‘ก

+๐ท๐‘‘๐ท๐‘‘๐‘ก

โˆ’๐ท๐‘‘๐ถ๐‘‘๐‘ก

โˆ’๐ท๐‘‘๐ท๐‘‘๐‘ก

(๐ถ+๐ท )2

ยฟ๐ถ ( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ ๐‘๐ท )๐ทโˆ’๐ท ( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ

(๐ถ+๐ท )2

6

Evolutionary dynamics of demographics

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ถ๐‘๐ท [ (๐‘‡ โˆ’๐‘… )๐‘๐ถ+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

Consider the example T > R > P > S

๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ท (1โˆ’๐‘๐ท ) [ (๐‘‡ โˆ’๐‘… ) (1โˆ’๐‘๐ท )+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

> 0

> 0

> 0

> 0> 0

0

pD

1.0

0.5

t4321

7

Evolutionary dynamics of demographics

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ถ๐‘๐ท [ (๐‘‡ โˆ’๐‘… )๐‘๐ถ+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

Consider the example T > R > P > S

๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ท (1โˆ’๐‘๐ท ) [ (๐‘‡ โˆ’๐‘… ) (1โˆ’๐‘๐ท )+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

> 0

> 0

> 0

> 0> 0

0

pD

1.0

0.5

t4321

Stable

Unstable

8

Evolutionary dynamics of demographics

๐‘‘๐ถ๐‘‘๐‘ก

=( ๐‘“ 0+๐‘…๐‘๐ถ+๐‘†๐‘๐ท )๐ถ ๐‘‘๐ท๐‘‘๐‘ก

=( ๐‘“ 0+๐‘‡ ๐‘๐ถ+๐‘ƒ๐‘๐ท )๐ท

๐‘‘๐‘๐ท

๐‘‘๐‘ก=๐‘๐ถ๐‘๐ท [ (๐‘‡ โˆ’๐‘… )๐‘๐ถ+(๐‘ƒโˆ’๐‘† )๐‘๐ท ]

Consider the example T > R > P > S

0

pD

1.0

0.5

t4321

Stable

Unstable

1. Enrichment in D because D is more fit than C (T > R and P > S)2. Loss of fitness of D (and of C) owing to enrichment in D (T > P and R > S)3. The fittest cells prevail, reducing their own fitness

Fitness of C Fitness of D

+R

+R +S

+T

+T

+S

+P

+P

Evolutionary game theory I: Well-mixed populations

9

Collisional population dynamics Traditional game theory

0

pD

1

t

+

?CD

10

Self-consistent quantity maximization

?

+?

+?

?DCC

11

Self-consistent quantity maximization

C

D

?

? C D?

?

?

+?

+?

C+R

+R +S

+T

??

??

DC

+T

+S D D

+P

+P

12

Self-consistent quantity maximization

C

D

?

? C D?

?

+R

+R +S

+T

+T+S

+P+P

13

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

14

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

15

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

16

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

17

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

D-vs.-D is a stable strategy pair in that neither agent can increase payoff through unilateral strategy change

18

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

D-vs.-D is a stable strategy pair in that neither agent can increase payoff through unilateral strategy change

Guided to solution D-vs.-D because T > R and P > S

Each individual obtains less-than-maximum payoff (P < T)owing to the other individualโ€™s adoption of strategy D

19

+R+R +S

+T

+T+S

+P+P

Consider example T > R > P > S

Agents try to maximize payoff

Solution := no agent can increase payoff through unilateral change of strategy. E.g., D-vs.-D (T > R and P > S).

Each agent obtains less-than-maximum payoff (P < T) owing to other agentโ€™s adoption of strategy D

Rationality

Nash equilibrium

0

pD

1

t

Consider example T > R > P > S

T, R, P, and S are cell-replication coefficients associated with pairwise collisions

Stable homogeneous steady state, i.e. pD โ†’ 1 because T > R and P > S.

Enriching in D reduces fitness of both cell types (because T > P and R > S)

Replicators with fitness

ESS

Evolutionary dynamics providing insight into a related game theory model

Game theory

Prisonerโ€™s dilemma

Evolutionary game theory

Fortune cookie