Ergodicity of STIT tessellationsrlachiez/recherche/talks/STITagl.pdf · 1 Random tessellations 2...

Post on 01-Jul-2020

2 views 0 download

Transcript of Ergodicity of STIT tessellationsrlachiez/recherche/talks/STITagl.pdf · 1 Random tessellations 2...

Ergodicity of STIT tessellations

Raphael Lachieze-Rey

Laboratoire Paul Painleve (Universite Lille 1)

January 13th, 2011

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 1 / 33

1 Random tessellations

2 STIT tessellations

3 Direct construction of the model

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 2 / 33

1 Random tessellations

2 STIT tessellations

3 Direct construction of the model

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 3 / 33

Tessellations

Definition

Tessellation: Set C = {C1,C2, ...} of convex compact cells, locally finite(for all compact K , {i ; Ci ∩ K 6= ∅} is finite), such that

Rd = ∪iCi ,

int(Ci ) ∩ int(Cj) = ∅, i 6= j .

The corresponding closed set is M = ∪i∂Ci .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

Some examples of real structures – Potential applications.

Craquelee on a ceramic (Photo: G. Weil)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

cracking simulation (H.-J. Vogel)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

Rat muscle tissue (I. Erzen)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

Perla 2.jpgGranit joints (D. Nikolayev, S. Siegesmund, S. Mosch, A. Hoffmann)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

Gris Perla.jpg

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 4 / 33

Poisson tessellations

Union of random lines.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 5 / 33

Voronoi and Delaunay tessellation

Π: Point process on Rd .

x ∈ Π,Vx : Set of points of Rd for which x is the closest element ofΠ,

Vx = {y ∈ R2; ‖x − y‖ = infx ′∈Π‖x ′ − y‖}

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 6 / 33

3D tessellations

3D Poisson hyperplanes tesselation:

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 7 / 33

Mixed tessellations

( Schmidt, Voss 2010)

Grey tessellation: Low-level servers.

Black spots: High-level servers.

Black tessellation (High-level network): Voronoi tessellationcorresponding to black points.

Left: Low-level servers= Voronoi tessellation.Right: Low-level servers=Poisson line tessellation.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 8 / 33

1 Random tessellations

2 STIT tessellations

3 Direct construction of the model

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 9 / 33

Parameters of the construction

Let H be the class of hyperplanes of Rd .

Intensity: a > 0.

Stationary measure ν on H, i.e. invariant under the action oftranslations, and locally finite.

W : Compact window of Rd .

[W ] = {H ∈ H : H ∩W 6= ∅}.

ν locally finite:ν([W ]) < +∞.

Renormalised restriction of ν to W :

νW (·) =1

ν([W ])ν([W ] ∩ ·).

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

Start from a bounded window W , and after a random exponential timewith rate ν([W ]), cut the window W by a random line drawn according toνW .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

�����������

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

�����������

@@@@@@@

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

�����������

@@@@@@@

(((((

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

�����������

@@@@@@@

(((((

Each sub-cell C created behaves independantly: it is divided after arandom time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Modelisation of cracking on compact window

���������������

AAAAAAAA

�����������

@@@@@@@

(((((

Stop the process when time a is reached.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33

Nagel, Weiss, Mecke (Jena)

Model of cell division.

Time process without memory (birth and death process).

Call MW ,a,ν the obtained “tessellation”,under the form of the union of thecells boundaries.

MW ,a,ν =⋃

C cell existing at time a

∂C .

It is a random element with values in the class F(W ) of closed sets of W .F(W ) is endowed with the Fell topology, and the corresponding Borelσ-algebra B.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 11 / 33

Examples(Simulations: J. Ohser)

Simulations of isotropic STIT tessellations. (ν is stationary and isotropic,i.e. invariant under the action of rotations).

In the isotropic case, the death rate of a cell ν([C ]) is proportionnal to itsperimeter.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 12 / 33

Non-isotropic example

Examples where ν is stationary (but not isotropic).

Here, ν([C ]) is proportionnal to the perimeter of the smallest rectanglewith sides parallels to the axes containing C .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 13 / 33

Binary tree

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 14 / 33

Tessellation on Rd .Consistency propertiesNagel and Weiss 2005:If W ⊆W ′, then

MW ,a,ν ∩ int(W )(d)= MW ′,a,ν ∩ int(W ).

Theorem

Let {Wi ; i ∈ N} be a family of compact windows such that

(i) Wi ↑ Rd ,

(ii) Wi ⊂ int(Wi+1).

If a family of random closed sets {FWi⊆Wi} satisfy

FWi∩ int(Wi )

(d)= FWj

∩ int(Wi ), j > i ,

then there exists a random closed set F of Rd such that

F ∩ int(Wi )(d)= FWi

, i ∈ N.Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 15 / 33

There exists a random tessellation Ma,ν ∈ F(Rd) such that

(Ma,ν ∩W ) ∪ ∂W(d)= Ma,ν,W

for all compact W . It is the STIT tessellation with parameters a and ν.We have

a = EHd−1(M ∩ [0, 1]d)

and a is the intensity.

There exists a direct construction of the tessellation with the help of apoint process on H× R+ (marked point process of hyperplanes).

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 16 / 33

Iteration

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 17 / 33

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 18 / 33

SSSSw

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 19 / 33

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 20 / 33

����/

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 21 / 33

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 22 / 33

����7

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 23 / 33

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 24 / 33

SSSSo

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 25 / 33

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 26 / 33

Rescaling

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 27 / 33

Rescaling

× 2⇒

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 28 / 33

Iteration

Let M,M ′ be two random tessellations.

C1,C2, . . . cells of M.

M ′1,M′2, . . . independent copies of M ′, independent of the Ci .

Define the iterate of M and M ′by

M � M ′ = 2 ∪i ∪Cj cell of M′i∂(Cj ∩ Ci ).

It is a definition in distribution.

The operation is not commutative.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 29 / 33

STable under ITeration (Mecke, Nagel, Weiss)

Every STIT tessellation Ma,ν satisfies

Ma,ν � Ma,ν(d)= Ma,ν .

Furthermore, every random tessellation M that satisfies this property is aSTIT.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 30 / 33

Attraction pool

Let M be a stationary tessellation. Define by induction{M1 = M,

Mn+1 = Mn � Mn.

ThenMn ⇒ Ma,ν ,

for a certain STIT tessellation Ma,ν .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 31 / 33

Mixing properties

A stationary tessellation M is mixing if

P(M ∩ K = ∅,M ∩ (K ′ + h) = ∅)→‖h‖→∞ P(M ∩ K = ∅)P(M ∩ K ′ = ∅),

for all compacts K ,K ′.

Theorem (L.,2009)

Let M be a STIT tessellation. Then for all compacts K and K ′,

P(K ∩M = ∅, (K ′ + h) ∩M = ∅)− P(K ∩M = ∅)P((K ′ + h) ∩M = ∅)= O(1/‖h‖)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 32 / 33

1 Random tessellations

2 STIT tessellations

3 Direct construction of the model

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Poisson point processes,marked with birth times

space

time

-

6 R× (0,∞)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Poisson point processes,marked with birth times

space

time

-

6

r

r

r

r r

r

rr r

rR× (0,∞)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

2. Poisson point processes,marked with birth times

space

time

-

6

r

r

r

r r

r

rr r

rR× (0,∞)

t

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Poisson point processes,marked with birth times

space

time

-

6

r

r

r

r r

r

rr r

rR× (0,∞)

t

r r r r r? ? ? ? ?

Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Now replace R byH ... the set of all lines in R2

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Poisson line processes Γt ,marked with birth times

space

time

-

6

r

r

r

r r

r

rr r

rH× (0,∞)

t

r r r r r? ? ? ? ?

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

����������������������������������������������������������������������������������������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

�����������������������������������

@@@@@@@@@@@@@@@@@@@@@@@@@@@@

((((((((

(((((((

(((((((

((((((

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Poisson point process Γ on H× (0,∞)with intensity measure ν × `+

ν translation invariant on H`+ ... Lebesgue measure on (0,∞)For all t > 0

Γt = {h : (h, s) ∈ Γ : s < t}

is a spatially homogeneous Poisson line process in R2.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

A preliminary constructionHow to start a division of the whole plane when all segments have to havea finite length?And all nodes are of T -type.

�������

�����

The crucial idea (by Joseph Mecke):Consider the process (Zt)t>0 of the o-cells of (Γt)t>0.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������

((((((((

(((((((

(((((((

((((((

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

�����������������������������������

((((((((

(((((((

(((((((

((((((

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

�����������������������������������

HHHHHH

HHHHHH

HHHHHH

HHHHHH

HHHHHH

HH

((((((((

(((((((

(((((((

((((((

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

�����������������������������������

HHHHHH

HHHHHH

HHHHHH

HHHHHH

HHHHHH

HH

@@@@@@@@@@@@@@@@@@@@@@@@@@@@

(((((((

(((((((

(((((((

(((((((

Γt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

For all t > 0 the Poisson line process Γt is a.s. not empty.Assume that the directional distribution R of the lines is not concentratedin a single point.Then Γt generates a tessellation with a compact convex polygon Zt thata.s. contains the origin o in its interior.=⇒ Stochastic process (Zt)t>0 of o-cells of (Γt)t>0.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

The isotonyΓt1 ⊆ Γt2 for t1 < t2

impliesZt1 ⊇ Zt2 for t1 < t2.

The process (Zt)t>0 is piecewise constant.Z . . . the set of all integers.Monotonic sequence (σk)k∈Z of times where (Zt)t>0 changes its state.σk is the time when the interior int Zσk−1

is hit by a line from Γ.

. . . < σ−2 < σ−1 < σ0 < σ1 < 1 < σ2 < . . .

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

We obtainlim

k→−∞σk = 0 and lim

k→∞σk =∞

Crucial for the construction

Zσk↑ R2 a.s. if k ↓ −∞

AlsoZσk↓ {o} a.s. if k ↑ ∞

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

A preliminary tessellation of R2

For t > 0 we define a tessellation Ψt with the cells

Zt and Zσk−1\ Zσk

, σk < t.

All these cells are compact, convex and have a pairwise disjoint interior.Due to

Zσk↑ R2 a.s. if k ↓ −∞

the cells fill the plane, i.e. for all t > 0

Zt ∪⋃σk<t

Zσk−1\ Zσk

= R2

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������

((((((((

(((((((

(((((((

((((((

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������

((((((((

(((((((

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

�����������������������������������

((((((((

(((((((

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

�����������������������������������

((((((((

(((((((

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAA

�����������������������������������

((((((((

(((((((

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAA

�����������������������������������

((((((((

(((((((

cell of Ψt

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAA

�����������������������������������

((((((((

(((((((

HHHHH

HHHHHH

HHHHHH

HHHHHH

HHHHHH

HHH

cell of Ψt

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

rZt

����������������������������������������������������������������������������������������������������������������

AAAAAA

�����������������������������������

((((((((

(((((((

cell of Ψt

cell of Ψt

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

The random tessellation Ψt is non-homogeneous(spatially non-stationary).Intuitively, the older cells of Ψt ,Zσk−1

\ Zσkwith σk close to the time 0

(themoment of the ’Big Bang’)are very far from the origin o ∈ R2

and they tend to be larger than the younger ones.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

The final steps of the construction –generating a spatially homogeneousrandom tessellation

For t > 0: non-homogeneous tessellation Ψt with the cells

Zt and Zσk−1\ Zσk

, σk < t.

A cellZσk−1

\ Zσk

is born at the time σk < t.During the time interval (σk , t) this bounded cell is divided by randomchords as described in the beginning.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

AAAAAAAAA

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

AAAAAAAAA

������������

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

AAAAAAAAA

������������

@@@@@@@

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

AAAAAAAAA

������������

@@@@@@@

(((((

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Restricted to the cell Zσk−1\ Zσk

and starting at time σk

���������������

AAAAAAAAA

������������

@@@@@@@

(((((

@@@@@@@@@@@@@@@@@@@

���������������������

AAAAAAAAAAAAA

... and finishing at time t.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Thus the cells Zσk−1\ Zσk

are filled during the time interval (σk , t)such that the resulting tessellation Φt

is spatially homogeneous,

STIT, i.e. stable under iteration/nesting of tessellations.

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33

Mecke, J., Nagel, W., Weiß, V. (2008). A global construction ofhomogeneous random planar tessellations that are stable under iteration.Stochastics: An Int. J. of Prob. and Stoch. Proc. 80, 51-67.

Mecke, J., Nagel, W., Weiß, V. (2008). The iteration of randomtessellations and a construction of a homogeneous process of cell divisions.Advances in Applied Probability 40, 49-59.

Nagel, W., Weiß, V. (2005). Crack STIT tessellations – characterization ofthe stationary random tessellations which are stable with respect toiteration.Advances in Applied Probability 37, 859-883.

Lachieze-Rey R., Mixing properties of STIT tessellations.Advances in Applied Probability43.1 (march 2011)

Raphael Lachieze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33