EE247 Lecture 16 - University of California, Berkeleyee247/fa05/lectures/L16... · 2005-10-20 ·...

Post on 26-May-2020

18 views 0 download

Transcript of EE247 Lecture 16 - University of California, Berkeleyee247/fa05/lectures/L16... · 2005-10-20 ·...

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 1

EE247Lecture 16

D/A converters continued:• Current based DACs-unit element versus binary weighted• Static performance

– Component matching-systematic & random errors• Practical aspects of current-switched DACs• Segmented current-switched DACs• DAC self calibration techniques

– Current copiers– Dynamic element matching

ADC Converters• Sampling

– Sampling switch induced distortion– Sampling switch charge injection

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 2

Current Source DACUnit Element

• “Unit elements ”• 2B-1 current sources & switches • Monotonicity does not depend on element matching• Suited for both MOS and BJT technologies• Output resistance of current source causes gain error

Iref Iref

Iout

IrefIref

……………

……………

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 3

Current Source DACUnit Element

• Output resistance of current source à gain error problemàUse transresistance amplifier

- Current source output held @ virtual ground - Error due to current source output resistance eliminated- New issues: offset & speed of the amplifier

Iref IrefIrefIref

……………

……………

Vout

R

-

+

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 4

Current Source DACBinary Weighted

• “Binary weighted”• B current sources & switches (2B-1 unit current

sources but less # of switches)• Monotonicity depends on element matching

4 Iref Iref

Iout

2Iref2B-1 Iref

……………

……………

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 5

Static DAC INL / DNL Errors• Component matching• Systematic errors

– Finite current source output resistance – Contact resistance– Edge effects in capacitor arrays– Process gradient

• Random errors– Lithography– Often Gaussian distribution (central limit

theorem)

*Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSC Aug. 1989, pp. 1118-28.

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 6

Gaussian Distribution

-3 -2 -1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x /σ

Pro

babi

lity

dens

ity p

(x)

( )2

2

x

2

2 2

1p( x ) e

2

where standard deviat ion : E( x )

µ

σ

πσ

σ µ

−−

=

= −

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 7

Yield

( )2xX

2

X

P X x X

1e dx

2

Xerf

2

π

+ −

− ≤ ≤ + =

=

=

∫ 0

0.1

0.2

0.3

0.4

Pro

babi

lity

dens

ity

p(x)

0 0.5 1 1.5 2 2.5 30

0.20.40.60.8

1

X

38.3

68.3

95.4

P(-

X ≤

x ≤

+X

)

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 8

Yield

X/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.04011.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.96823.8000 99.98554.0000 99.9937

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 9

Example

• Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with σ = 2mV and µ = 0.

• Fraction of opamps with |Vos| < 6mV:– X/σ = 3 à 99.73 % yield

• Fraction of opamps with |Vos| < 400µV:– X/σ = 0.2 à 15.85 % yield

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 10

Component Mismatch

R

R

10000

100

200

300

400

No.

of r

esis

tors

1004 1008 1012996992988R[ ]Ω

Example: Side-by-side resistors

E.g. Let us assume in this example large # of Rs with average of 1000OHM measured: 68.5% within +-4OHM or +-0.4% of averageà 1σ for resistorsà 0.4%

Large # of devices measured & curved àtypically if sample size is large shape is Gaussian

…….…….

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 11

Component Mismatch

1 2

1 2

2dR

R

R RR

2

dR R R

1

Areaσ

+=

= −

R

R

00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pro

babi

lity

dens

ity p

(x)

σ 2σ 3σ−σ−2σ−3σdR

R

Two side-by-sideResistors

For typical technologies & geometries1σ for resistorsà 0.02 το 5%

In the case of resistors σ is a function of area

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 12

DNL Unit Element DAC

i i refR I∆ =

DNL of unit element DAC is independent of resolution!

E.g. Resistor string DAC:

Iref

i

i

median ref

i i re f

median ii

median

i median

imedian median

DNL dR

R

R I

R I

DNL

R R dR dR

R R R

σ σ

∆ =

∆ =

∆ − ∆=

−= = ≈

=

Vref

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 13

DNL Unit Element DAC

Example:If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

DNL of unit element DAC is independent of resolution!Note similar results for all unit-element based DACs

E.g. Resistor string DAC:

i

i

DNL dR

R

σ σ=

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 14

Yield

X/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.04011.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.96823.8000 99.98554.0000 99.9937

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 15

DNL Unit Element DACExample:If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

Answer:From table: for 99.9% à X/σ = 3.3σDNL = σdR/R = 0.4%3.3 σDNL = 1.3%

àDNL= +/- 0.013 LSB

E.g. Resistor string DAC:

i

i

DNL dR

R

σ σ=

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 16

DAC INL Analysis

B

A

N=2B-1n

n

N

Out

put [

LSB

]

Input [LSB]

E

Ideal VarianceA=n+E n n.σε

2

B=N-n-E N-n (N-n).σε2

E = A-n r =n/N N=A+B= A-r(A+B)= A (1-r) -B.rà Variance of E:

σE2 =(1-r)2 .σΑ

2 + r 2 .σB2

=N.r .(1-r).σε2

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 17

DAC INL

• Error is maximum at mid-scale (N/2):

• INL depends on DAC resolution and element matching σε

• While σDNL = σε

Ref: Kuboki et al, TCAS, 6/1982

2 2E

2E

BINL

B

n1n

Nd

To find max. variance: 0dn

n N / 2

12 1

2 with N 2 1

ε

ε

σ σ

σ

σ σ

−= ×

=

→ =

= −

= −

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 18

Untrimmed DAC INL

Example:

Assume the following requirement:σINL = 0.1 LSB

Then:σε = 1% à B = 8.6σε = 0.5% à B = 10.6σε = 0.2% à B = 13.3σε = 0.1% à B = 15.3

+≅

−≅

ε

ε

σσ

σσ

INL

BINL

B 2log22

1221

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 19

Simulation Example

σε = 1%B = 12Random # generator used in MatLab

Computed INL:σDNL = 0.01 LSBσINL = 0.3 LSB(midscale)

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

DN

L [L

SB

]12 Bit converter DNL and INL

-0.04 / +0.03 LSB

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

LSB

] -0.2 / +0.8 LSB

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 20

Binary Weighted DAC INL/DNL

• INL same as for unit element DAC

• DNL depends on transition– Example:

0 to 1àσDNL2 = σ(dΙ/Ι)

2

1 to 2 àσDNL2 = 3σ(dΙ/Ι)

2

• Consider MSB transition: 0111 … à 1000 …

4 Iref Iref

Iout

2Iref2B-1 Iref

……………

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 21

MOS Device Matching Effects

d1 d 2d

d d1 d2

d d

Wd thL

W GSd thL

I II2

dI I II I

dI d dVI V V

+=

−=

= +−

Id1 Id2

• Current matching depends on:- Device W/L ratio matching à Larger device area less mismatch effect

- Threshold voltage matchingà Larger gate-overdrive less threshold voltage mismatch effect

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 22

Current-Switched DACs in CMOS

Wd thL

Wd GS thL

dI d dV

I V V= +

Iout

Iref

……

Switch Array

•Advantages:Can be very fastSmall area for < 9-10bits

•Disadvantages:Accuracy depends on device W/L & Vth matching

256 128 64 ………..…..1

Example: 8bit Binary Weighted

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 23

Binary Weighted DAC DNL

( ) ( )

DNLmaxB

INL DNLmax max

2 B 1 2 B 1 2DNL

B 2

B / 2

1 12 1

2 2

2 1 2

0111... 1000...

2

2

ε

ε ε

ε

ε

σ σ σ

σ

σ σ

σ σ σ

− −

=

≅ − ≅

= − +

1442443 14243

• Worst-case transition occurs at mid-scale:

• Example:B = 12, σε = 1%àσDNL = 0.64 LSBàσINL = 0.32 LSB

2 4 6 8 10 12 140

5

10

15

DAC input code

σ DN

L2 / σ ε

2

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 24

“Another” Random Run …Now (by chance) worst DNL is mid-scale.

Close to statistical result!500 1000 1500 2000 2500 3000 3500 4000-2

-1

0

1

2

bin

DN

L [L

SB

]

DNL and INL of 12 Bit converter

-1 / +0.1 LSB,

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

[LS

B]

-0.8 / +0.8 LSB

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 25

Unit Element versus Binary Weighted DAC

Unit Element DAC Binary Weighted DAC

Number of switched elements:

Key point: Significant difference in performance and complexity!

B2

B2

DNL INL

1INL

2 2

2

S B

ε

ε

σ σ σ

σ σ−

≅ =

=

B2

DNL

1INL

B

2

S 2

ε

ε

σ σ

σ σ−

=

=

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 26

Unit Element versus Binary Weighted DACExample: B=10

B2

DNL

1INL

B

2 16

S 2 1024

ε

ε ε

σ σ

σ σ σ−

=

≅ =

= =

Significant difference in performance and complexity!

B2

B2

DNL

1INL

2 32

2 16

S B 10

ε ε

ε ε

σ σ σ

σ σ σ−

≅ =

≅ =

= =

Unit Element DAC Binary Weighted DAC

Number of switched elements:

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 27

DAC INL/DNL Summary• DAC architecture has significant impact on DNL

• INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision

• Results are for uncorrelated random element variations

• Systematic errors and correlations are usually also important

Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 28

Segmented DAC• Objective:

Compromise between unit element and binary weighted DAC

• Approach:B1 MSB bits à unit elementsB2 LSB bits à binary weighted

• INL: unaffected• DNL: worst case occurs when LSB DAC turns off and one more MSB

DAC element turns on- same as binary weighted DAC with B2+1 bits• Number of switched elements: (2B1-1) + B2

Unit Element Binary Weighted

VAnalog

MSB (B1 bits) (B2 bits) LSB

… …

BTotal = B1+B2

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 29

ComparisonExample:

B = 12, B1 = 5, B2 = 7B1 = 6, B2 = 6

σε = 1%

( )B 122

B2

DNL INL

1INL

B12

2 2

2

S 2 1 B

ε

ε

σ σ σ

σ σ

+

≅ =

= − +

409512

31+7=3863+6=69

0.010.640.160.113

0.320.320.320.32

Unit element (12+0)Binary weighted(0+12)Segmented (5+7)Segmented (6+6)

# of switched elements

σDNL[LSB]σINL[LSB]DAC Architecture

MSB LSB

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 30

Practical AspectsCurrent-Switched DACs

• Unit element DACs ensure monotonicity by turning on equal-weighted current sources in succession

• Typically current switching performed by differential pairs

• Based on the code only one of the diff. pair devices are onà device mismatch not an issue

• Issue: While binary weighted DAC can use the incoming binary digital code directly, unit element requires a decoderà N to (2N-1) decoder

Binary Thermometer000 0000000001 0000001010 0000011011 0000111100 0001111101 0011111110 0111111111 1111111

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 31

SegmentedCurrent-Switched DAC

• 4-bit MSB Unit element DAC + 4-bit binary weighted DAC

• Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder

• Digital code for both DACs stored in a register

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 32

Segmented Current-Switched DACCont’d

• 4-bit MSB Unit element DAC + 4-bit binary weighted DAC

• Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder

• Digital code for both DACs stored in a register

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 33

Segmented Current-Switched DACCont’d

• MSB Decoderà Domino logicà Example: D4,5,6,7=1

OUT=1

• Registerà Latched NAND gate:à CTRL=1 OUT=INB

Register

Domino Logic

IN

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 34

Segmented Current-Switched DACReference Current Considerations

• Iref is referenced to VDD

à Problem: Reference current varies with supply voltage

+

-

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 35

Segmented Current-Switched DACReference Current Considerations

• Iref is referenced to VssàGND

+-

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 36

Segmented Current-Switched DACConsiderations

• Example: 2-bit MSB Unit element DAC + 3-bit binary weighted DAC

• To ensure monotonicity at the MSBà LSB transition: First OFF MSB current source is routed to LSB current generator

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 37

Dynamic DAC Error: Glitch

• Consider binary weighted DAC transition 011 à 100

• DAC output depends on timing

• Plot shows situation where– LSB/MSBs on time– LSB early, MSB late– LSB late, MSB early

1 1.5 2 2.5 30

5

10

Idea

l

1 1.5 2 2.5 30

5

10

Ear

ly1 1.5 2 2.5 3

0

5

10

TimeLa

te

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 38

Glitch Energy

• Glitch energy (worst case) proportional to: dt x 2B-1

• dt à error in timing & 2B-1 associated with half of the switches changing state

• LSB energy proportional to: T=1/fs

• Need dt x 2B-1 << T or dt << 2-B+1 T

• Examples:

<< 488<< 1.5<< 2

121610

120

1000

dt [ps]Bfs [MHz]

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 39

DAC Reconstruction Filter

• Need for and requirements depend on application

• Tasks:– Correct for sinc distortion– Remove “aliases”

(stair-case approximation)

B fs/2

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C In

put

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

sinc

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C O

utpu

tFrequency

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 40

Reconstruction Filter Options

• Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2)

• Digital filter– Bandlimits the input signal à prevent aliasin– Could also provide high-frequency pre-emphasis to

compensate in-band sinc amplitude droop associated with the inherent DAC ZOH function

DigitalF ilter

DAC SCFilter

ZOH CTFilter

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 41

DAC Implementation Examples• Untrimmed segmented

– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983

– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315

• Current copiers:– D. W. J. Groeneveld et al, “A Self-Calibration Techique for

Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517

• Dynamic element matching:– R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 42

2µ tech., 5Vsupply6+2 segmented8x8 array

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 43

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 44

Current-Switched DACs in CMOS( )

( )

( )

( )

M 1

M 2 M 1

M 3 M 1

M 4 M 1

M 2

M 1

M 1

M 1

M 1

M 1

M 1

M 1

M 1

2GS th1

GS GS

GS GS

GS GS2

2GS th2 1

GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

m4 1

V VI kV V 3RIV V 5RIV V 6RI

3RI1V VI k I

V V2I

gV V

3RgI I I 1 3Rg12

5RgI I I 1 5Rg12

6RgI I 12

−== −= −= −

−−= = − =

→ = ≈ −−

→ = ≈ −−

→ = −

( )M 1

2

1 mI 1 6Rg≈ −

Iout

•Assumption: RI is small compared to transistor gate overdriveà Desirable to have gm small

Example: 4 unit element current sources

VDD

I1 I2 I3 I4

3RI 2RI RI

M1 M2 M3 M4

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 45

More recent published DAC using symmetrical switching built in 0.35micron/3V

(5+5)

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 46

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 47

I

I/2 I/2

Current Divider

16bit DAC (6+10)- MSB DAC uses calibrated current sources

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 48

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 49

I

I/2 I/2

Ideal Current Divider

Current Divider Accuracy

I

I/2+dId /2

Real Current Divider

M1& M2 mismatched

d1 d 2d

d d1 d 2

d d

WLd

thWLd GS th

I II

2

dI I I

I I

ddI 2dV

I V V

+=

−=

= × +

I/2-dId /2

M1 M2M1 M2

àProblem: Device mismatch could severely limit DAC accuracy

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 50

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 51

Dynamic Element Matching

( ) ( )

(1) ( 2 )2 2

2

1 1o

o1

I II

21 1I

2 2I

for smal l2

+=

− ∆ + + ∆=

≈ ∆

( )( )

(1) 1 o 11 2(1) 1 o 12 2

I I 1

I I 1

= + ∆

= − ∆

/ 2 error ∆1

I1

During Φ1 During Φ2

I2

fclk

Io

Io/2Io/2( )( )

( 2 ) 1 o 11 2( 2 ) 1 o 12 2

I I 1

I I 1

= − ∆

= + ∆

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 52

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 53

Dynamic Element Matching

( )( )

( )( )( )214

1

2)1(

121)1(

3

121)1(

2

121)1(

1

11

1

1

1

∆+∆+=∆+=

∆−=

∆+=

o

o

o

I

II

II

II ( )( )

( )( )( )214

1

2)2(

121)2(

3

121)2(

2

121)2(

1

11

1

1

1

∆−∆−=∆−=

∆+=

∆−=

o

o

o

I

II

II

II

During Φ1 During Φ2

( )( ) ( )( )

( )21

2121

)2(3

)1(3

3

14

21111

4

2

∆∆+=

∆−∆−+∆+∆+=

+=

o

o

I

I

III

E.g. ∆1 = ∆2 = 1% à matching error is (1%)2 = 0.01%

/ 2 error ∆1

I1

I2

fclk

Io

Io/2

/ 2 error ∆2

I3 I4

fclk

Io/4Io/4

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 54

SummaryD/A Converter

• D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL– Segmented- unit element MSB(B1)+ binary weighted LSB(B2)à complexity

proportional (2B1-1) + B2 – DNL compromise between the two• Static performance

– Component matching• Dynamic performance

– Glitches• DAC improvement techniques

– Symmetrical switching rather than sequential switching– Current source self calibration– Dynamic element matching

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 55

MOS Sampling Circuits

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 56

Re-Cap

• How can we build circuits that "sample"

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 57

Ideal Sampling

• In an ideal world, zero resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C

• Not realizable!

vIN vOUT

CS1

φ1

φ1

T=1/fS

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 58

Ideal T/H Sampling

vIN vOUT

CS1

φ1

• Vout tracks input when switch is closed• Grab exact value of Vin when switch opens• "Track and Hold" (T/H) (often called Sample & Hold!)

φ1

T=1/fS

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 59

Ideal T/H Sampling

ContinuousTime

T/H signal(SD Signal)

Clock

DT Signal

time

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 60

Practical Sampling

vIN vOUT

CM1

φ1

• Switch induced noise power à kT/C • Finite Rswà limited bandwidth• Rsw = f(Vin) à distortion• Switch charge injection • Clock jitter

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 61

kT/C Noise

In high resolution ADCs kT/C noise usually dominates overall error (power dissipation considerations).

2

2

1212

12

−≥

∆≤

FS

B

B

B

VTkC

CTk

0.003 pF0.8 pF13 pF

206 pF52,800 pF

812141620

Cmin (VFS = 1V)B

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 62

Acquisition Bandwidth

• The resistance R of switch S1 turns the sampling network into a lowpass filter with risetime = RC = τ

• Assuming Vin is constant during the sampling period and C is initially discharged

vIN vOUT

CS1

φ1

R

( )τ/1)( tinout evtv −−=

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 63

Switch On-Resistance

Example:B = 14, C = 13pF, fs = 100MHz

T/τ >> 19.4, R << 40Ω

vIN vOUT

CS1

φ1

φ1

T=1/fS

R

( )

( )

12

12

Worst Case:

12 ln 2 1

1 12 ln 2 1

s

in outs

fin

in FS

B

Bs

V V tf

V e

V V

T

Rf C

τ

τ

− = << ∆

<< ∆=

<< −−

<< −−

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 64

Switch On-Resistance

( ) ( )

( )

( )( )

0

1,

2

1 1

1 for

1

DS

D triodeDSD triode ox GS TH DS

ON DS V

ON

ox GS th ox DD th in

o

ox DD th

oON

in

DD th

dIW VI C V V V

L R dV

RW W

C V V C V V VL L

RW

C V VL

RR

VV V

µ

µ µ

µ

= − − ≅

= =− − −

=−

=−

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 65

Sampling Distortion

in

DD th

outT V

12 V V

in

v

v 1 e τ

− − −

= −

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 66

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR is very sensitive to sampling distortion

• Solutions:• Overdesignà Larger

switchesà increased switch

charge injection• Complementary switch• Maximize VDD/VFSà decreased dynamic range

• Constant VGS ? f(Vin)à …