ECE 255 L17 BJT Transistor AmplifiersV2 - nanoHUB.org

Post on 09-Jan-2022

2 views 0 download

Transcript of ECE 255 L17 BJT Transistor AmplifiersV2 - nanoHUB.org

1

ECE 255: L17

BJT Transistor Amplifiers (Sedra and Smith, 7th Ed., Sec. 7.1, 7.2.2)

Mark Lundstrom School of ECE

Purdue University West Lafayette, IN USA

Spring 2019 Purdue University

Lundstrom: 2019

Announcements

2

1)  LTspice Project 2 is posted. The due date for it is Wed. Feb. 27th by 5:00PM electronically. You should find your assigned your beta value in your grade book.

2)  HW6 will be posted today

3)  Exam 2 in on Tuesday, March 5, 6:30-7:30 PM PHYS 112

Lundstrom: 2019

Outline

3

1)  Voltage transfer characteristic (VTC) 2)  Small signal model for BJT 3)  Small signal analysis

Lundstrom: 2019

Voltage Transfer Characteristic

4

+V

OUT=VCC − ICRC

β = 100

VCC = 10 V

RC = 5 kΩIC

RBB = 430 kΩ

VIN+−

VBE ON( ) = 0.7 V

What is VOUT vs. VIN?

Lundstrom: 2019

VTC

5

VIN

VOUT

VCC

≈ 0.3V

≈ 0.7 V

cutoff active saturation

VOUT

VCC = 10 V

RC = 5 kΩIC

RBB = 430 kΩ

VIN+−

Lundstrom: 2019

Biasing in the active region

6

VIN

VOUT

VCC

≈ 0.3V

≈ 0.7 V

cutoff active saturation

Q : IC ,VCE( )

VOUT =VCC − IC RC

VOUT =VCC − ISeVIN VT( )RC

Lundstrom: 2019

Bias Circuit

7

+V

CE

β = 100

VCC = 10 V

RC = 5 kΩIC

RBB = 430 kΩ

VBB = 5 V +−

IB = ? mA

IC = ? mA

VCE = ? V

VBE ON( ) = 0.7 V Lundstrom: 2019

Bias Circuit

8

+V

CE

β = 100

VCC = 10 V

RC = 5 kΩIC

RBB = 430 kΩ

VBB = 5 V +−

IB = 0.01mA

IC = 1.0 mA

VCE = 5.0 V

VBE ON( ) = 0.7 V Lundstrom: 2019

Biasing

9

VIN

VOUTVCC = 10 V

≈ 0.3V

cutoff active saturation

Q : IC = 1mA,VCE = 5.0 V( )

VO = 5 V

VBB = 5.0 V

Lundstrom: 2019

Add ac small signal

10

+υO =V

O+υo sinωt

β = 100

VCC = 10 V

RC = 5 kΩiC = IC + ic

RBB = 430 kΩ

VBB = 5 V+−

υi sinωt

VBE ON( ) = 0.7 V

“Common emitter amplifier”

Lundstrom: 2019

Qualitative

11

VI

VO

VCCAV = δVO

δVI≈ dVOdVI

AV < 0

voltage gain

υ I =VBB +υiυ I =VBB −υi

VO

VO −δVO

VO +δVO

(for this circuit)

2δVI

2δVO

Qualitative

12

VI

VO

VCC

≈ 0.3V

VO =VCC − IC RC

VO =VCC − ISeVBE VT( )RC

dVO

dVBE

= −ISeVBE VT( )

VT

RC = −IC

VT

RC

gm ≡

dIC

dVBE

=IC

VT(transconductance)

Aυbe=υo

υbe

= −gmRC

Lundstrom: 2019

Voltage gain of CE amplifier

13

+υOUT =VO

+υo

β = 100

VCC = 10 V

RC = 5 kΩiC = IC + ic

RBB = 430 kΩ

VBB = 5 V +−

υi

VBE ON( ) = 0.7 V

+υbe

Aυbe

=υo

υbe

= −gmRC

Aυi

=υo

υi

= ?

Lundstrom: 2019

Analysis by superposition

14

+υOUT =VO

+υo

β = 100

VCC = 10 V

RC = 5 kΩiC = IC + ic

RBB = 430 kΩ

VBB = 5 V +−

υi

1)  DC first 2)  Then AC

VBE ON( ) = 0.7 V Lundstrom: 2019

1) DC analysis

15

+V

O= 5 V

β = 100

VCC = 10 V

RC = 5 kΩIC = 1mA

RBB = 430 kΩ

VBB = 5 V +−

VBE ON( ) = 0.7 V Lundstrom: 2019

2) AC analysis

16

+υo

RC = 5 kΩic

RBB = 430 kΩυi

We need an ac small signal model for the BJT

Lundstrom: 2019

Recall: DC currents

17

N P N

IC = β IB =α IE

IB = IC β

IE =β +1β

IC = ICα

What is the a.c. small signal model?

Lundstrom: 2019

ac collector current

18

N P N

IC + ic

IB + ib

IC = ISeVBE VT → IC + ic = ISe

VBE+υbe( ) VT

IC + ic = ISeVBE VT eυbe VT

IC + ic = ISeVBE VT 1+υbe VT( )

ic = ISeVBE VT υbe VT( ) = IC υbe VT( )

ic =ICVT

υbe = gmυbe Ohm’s Law

Lundstrom: 2019

Summary: s.s. collector current

19

N P N

ic

ib ic = gmυbe

gm = ICVT

+υbe

“transconductance”

Note that the ac model parameter, gm, depends on the dc bias current, IC. Lundstrom: 2019

s.s. base current

20

N P N

ic

ib

ic = gmυbe

gm = ICVT

ib =icβ= gm

βυbe =

υbe

β gm= υbe

ib =υbe

gmrπ = β

+υbe

Lundstrom: 2019

s.s. eqv. circuit model: gm form

21

icib

B

E

C

gm = IC VT gmrπ = β

+υbe

−E

C B

ib ic

rπ gmυπ

+υπ

“hybrid pi model”

s.s. eqv. circuit model: beta form

22

gm = ICVT

gmrπ = βE

C B ib ic

rπ gmυπ

+υπ

gm = β rπ

ic =βrπυπ = βib

βib

ic = gmυπ

VCCS

CCCS

Lundstrom: 2019

s.s. eqv. circuit model: vce dependence

23

E

C B ib ic

rπ gmυπ

+υπ

This model says that the collector current does not depend on the collector-emitter voltage.

Lundstrom: 2019

Output resistance

24 E

VCE

IC

IC = ISeqVBE kBT 1+

υCE

VA

⎝⎜⎞

⎠⎟

dIC

dVCE

= ISeqVBE kBT 1VA

⎝⎜⎞

⎠⎟=

′IC

VA

ic =

υce

r0

ro ≈

VA

IC

VA = “Early Voltage”

dIC

dVCE

≈icυceVBE1, IB1

Hybrid pi model

25

gm = ICVT

gmrπ = βE

C B

ib ic

rπ gmυπ

+υπ

ro

+υce

ro =VA ICLundstrom: 2019

Small signal circuit

26

+υo

RC = 5 kΩiC = IC + ic

RBB = 430 kΩυi

We now have an ac small signal model for the BJT

Lundstrom: 2019

Simple s.s. model

27

gm = ICVT

gmrπ = β

E

C B ib ic

rπ+υπ

gmυπ

Lundstrom: 2019

ac analysis

28

+υo

RC

ic

RBB

υi

C B ib

rπ+υπ

gmυπ

E

Same circuit

29

+υo

− RC

ic RBBυs

C B

ib rπ+υπ

gmυπ

E

Lundstrom: 2019

ac analysis

30

υo = −gmυπRC

υπ =rπ

rπ+ RBB

υs

υo = −rπ

rπ+ RBB

⎝⎜

⎠⎟ gmRCυs

υo

υs

= Aυs= −

rπ+ RBB

⎝⎜

⎠⎟ gmRC

β = 100

RC = 5 kΩIC = 1mA

RBB = 430 kΩ

gm = ICVT

= 1mA0.026 V

= 38.5 mS

gmrπ = β

rπ = β gm = 100 0.039 = 2.6 kΩ

Aυs= −1.2

Hybrid pi model with output resistance

31

gm = ICVT

gmrπ = βE

C B

ib ic

rπ gmυπ

+υπ

ro

+υce

ro =VA ICLundstrom: 2019

Circuit with output resistance

32

+υo

− RC

ic RBBυi

C B

ib rπ+υπ

gmυπ

E

ro

Lundstrom: 2019

Transistor parameters

33

N P N

ic

ib

+υbe

β = 100

VBE ON( ) = 0.7 V

VA = 100 V

ro =VAIC

= 100 V1mA

= 100 kΩ

Lundstrom: 2019

2) AC analysis with output resistance

34

υo

υi

= A = −rπ

rπ+ RBB

⎝⎜

⎠⎟ gmRC

Av = −1.2→ Av = −1.1

υo

υi

= A = −rπ

rπ+ RBB

⎝⎜

⎠⎟ gmRC || r0

5 kΩ ||100 kΩ = 4.76 kΩ

(without ro)

(with ro)

Lundstrom: 2019

Hybrid pi model of BJT

35

gm = ICVT

gmrπ = βE

C B

ib ic

rπ gmυπ

+υπ

ro

+υce

ro =VA ICLundstrom: 2019

Question: What does the small signal model for a PNP transistor like?

Summary

36 Lundstrom: 2019

The small signal model of a BJT consists of two resistors and one voltage-controlled current course. The values of the ac model parameters are determined by the dc bias current.

The DC bias circuit places the operating point in the portion of the Voltage Transfer Characteristics where the output voltage changes rapidly with input voltage.

Circuit analysis consists of two steps: 1) dc analysis to determine the OP, and 2) ac small signal analysis using the ac circuit model.

Transistor Amplifiers

Lundstrom: 2019 37

1)  Voltage transfer characteristic (VTC) 2)  Small signal model for BJT 3)  Small signal analysis