Doc.: IEEE 802.11-15/0602r6 Submission HE-LTF Sequence for UL MU-MIMO September, 2015 Slide 1 Date:...

Post on 13-Dec-2015

233 views 1 download

Transcript of Doc.: IEEE 802.11-15/0602r6 Submission HE-LTF Sequence for UL MU-MIMO September, 2015 Slide 1 Date:...

doc.: IEEE 802.11-15/0602r6

Submission

HE-LTF Sequence for UL MU-MIMOSeptember, 2015

Slide 1

Date: 2015-09-13Authors:

Name Affiliation Address Phone Email

Qinghua Li

Intel

2111 NE 25th Ave, Hillsboro OR 97124,

USA    

+1-408-765-9698   

quinghua.li@intel.com

Xiaogang Chen xiaogang.c.chen@intel.com

Robert Stacey robert.stacey@intel.com

Po-Kai Huang po-kai.huang@intel.com

Chitto Ghosh chittabrata.ghosh@intel.com

Rongzhen Yang rongzhen.yang@intel.com

Hongyuan Zhang

Marvell5488 Marvell Lane,

Santa Clara, CA, 95054

+408-222-2500

hongyuan@marvell.com

Yakun Sun yakunsun@marvell.com

Lei Wang Leileiw@marvell.com

Liwen Chu liwenchu@marvell.com

Jinjing Jiang jinjing@marvell.com

Yan Zhang yzhang@marvell.com

Rui Cao ruicao@marvell.com

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission Slide 2

Authors (continued)Name Affiliation Address Phone Email

Jie Huang

Marvell(Cont’d)

5488 Marvell Lane,Santa Clara, CA, 95054

408-222-2500

jiehuang@marvell.com

Sudhir Srinivasa sudhirs@marvell.com

Saga Tamhane sagar@marvell.com

Mao Yu my@marvel..com

Edward Au edwardau@marvell.com

Hui-Ling Lou hlou@marvell.com

Ron Porat

Broadcom

    rporat@broadcom.com

Matthew Fischer     mfischer@broadcom.com

Sriram Venkateswaran

     

Tu Nguyen

Vinko Erceg      

Brian Hart Cisco Systems

170 W Tasman Dr, San Jose, CA 95134

  brianh@cisco.com

Pooya Monajemi   pmonajem@cisco.com

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 3

Authors (continued)

Name Affiliation Address Phone Email

Wookbong Lee

LG Electronics19, Yangjae-daero 11gil, Seocho-gu, Seoul 137-

130, Korea

  wookbong.lee@lge.com

Kiseon Ryu   kiseon.ryu@lge.com

Jinyoung Chun   jiny.chun@lge.com

Jinsoo Choi   js.choi@lge.com

Jeongki Kim   jeongki.kim@lge.com

Giwon Park   giwon.park@lge.com

Dongguk Lim   dongguk.lim@lge.com

Suhwook Kim   suhwook.kim@lge.com

Eunsung Park   esung.park@lge.com

HanGyu Cho   hg.cho@lge.com

Thomas Derham Orange     thomas.derham@orange.com

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission Slide 4

Authors (continued)

Name Affiliation Address Phone Email

Fei Tong

Samsung

Innovation Park, Cambridge CB4 0DS (U.K.) +44 1223 434633 f.tong@samsung.com

Hyunjeong Kang Maetan 3-dong; Yongtong-GuSuwon; South Korea +82-31-279-9028 hyunjeong.kang@samsung.com

Kaushik Josiam 1301, E. Lookout Dr, Richardson TX 75070 (972) 761 7437 k.josiam@samsung.com

Mark Rison Innovation Park, Cambridge CB4 0DS (U.K.) +44 1223 434600 m.rison@samsung.com

Rakesh Taori 1301, E. Lookout Dr, Richardson TX 75070 (972) 761 7470 rakesh.taori@samsung.com

Sanghyun Chang Maetan 3-dong; Yongtong-GuSuwon; South Korea +82-10-8864-1751 s29.chang@samsung.com

Yasushi Takatori

NTT 1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847 Japan

  takatori.yasushi@lab.ntt.co.jp

Yasuhiko Inoue   inoue.yasuhiko@lab.ntt.co.jp

Yusuke Asai   asai.yusuke@lab.ntt.co.jp

Koichi Ishihara   ishihara.koichi@lab.ntt.co.jp

Akira Kishida   kishida.akira@lab.ntt.co.jp

Akira Yamada

NTT DOCOMO

3-6, Hikarinooka, Yokosuka-shi, Kanagawa, 239-8536, Japan   yamadaakira@nttdocomo.com

Fujio Watanabe3240 Hillview Ave, Palo Alto,

CA 94304

 watanabe@docomoinnovations.

comHaralabos

Papadopoulos 

hpapadopoulos@docomoinnovations.com

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 5

Authors (continued)Name Affiliation Address Phone Email

Phillip Barber

Huawei

The Lone Star State, TX  pbarber@broadbandmobilete

ch.com

Peter Loc     peterloc@iwirelesstech.com

Le Liu F1-17, Huawei Base, Bantian, Shenzhen +86-18601656691 liule@huawei.com

Jun Luo 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai   jun.l@huawei.com

Yi Luo F1-17, Huawei Base, Bantian, Shenzhen +86-18665891036 Roy.luoyi@huawei.com

Yingpei Lin 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai   linyingpei@huawei.com

Jiyong Pang 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai   pangjiyong@huawei.com

Zhigang Rong10180 Telesis Court, Suite

365, San Diego, CA  92121 NA

  zhigang.rong@huawei.com

Rob Sun 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada   Rob.Sun@huawei.com

David X. Yang F1-17, Huawei Base, Bantian, Shenzhen   david.yangxun@huawei.com

Yunsong Yang10180 Telesis Court, Suite

365, San Diego, CA  92121 NA

  yangyunsong@huawei.com

Zhou Lan F1-17, Huawei Base, Bantian, SHenzhen +86-18565826350 Lanzhou1@huawei.com

Junghoon Suh 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada   Junghoon.Suh@huawei.com

Jiayin Zhang 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai +86-18601656691 zhangjiayin@huawei.com

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 6

Authors (continued)Name Affiliation Address Phone Email

Albert Van Zelst

Qualcomm

Straatweg 66-S Breukelen, 3621 BR Netherlands   allert@qti.qualcomm.com

Alfred Asterjadhi 5775 Morehouse Dr. San Diego, CA, USA   aasterja@qti.qualcomm.com

Bin Tian 5775 Morehouse Dr. San Diego, CA, USA   btian@qti.qualcomm.com

Carlos Aldana 1700 Technology Drive San Jose, CA 95110, USA   caldana@qca.qualcomm.com

George Cherian 5775 Morehouse Dr. San Diego, CA, USA   gcherian@qti.qualcomm.com

Gwendolyn Barriac 5775 Morehouse Dr. San Diego, CA, USA   gbarriac@qti.qualcomm.com

Hemanth Sampath 5775 Morehouse Dr. San Diego, CA, USA   hsampath@qti.qualcomm.com

Menzo Wentink Straatweg 66-S Breukelen, 3621 BR Netherlands  

mwentink@qti.qualcomm.com

Richard Van Nee Straatweg 66-S Breukelen, 3621 BR Netherlands   rvannee@qti.qualcomm.com

Rolf De Vegt 1700 Technology Drive San Jose, CA 95110, USA   rolfv@qca.qualcomm.com

Sameer Vermani 5775 Morehouse Dr. San Diego, CA, USA   svverman@qti.qualcomm.com

Simone Merlin 5775 Morehouse Dr. San Diego, CA, USA   smerlin@qti.qualcomm.com

Tevfik Yucek   1700 Technology Drive San Jose, CA 95110, USA   tyucek@qca.qualcomm.com

VK Jones 1700 Technology Drive San Jose, CA 95110, USA   vkjones@qca.qualcomm.com

Youhan Kim 1700 Technology Drive San Jose, CA 95110, USA   youhank@qca.qualcomm.com

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

September, 2015

Slide 7

Authors (continued)Name Affiliation Address Phone Email

James Yee

Mediatek

No. 1 Dusing 1st Road, Hsinchu, Taiwan

+886-3-567-0766  james.yee@mediatek.com

Alan Jauh   alan.jauh@mediatek.com

Chingwa Hu   chinghwa.yu@mediatek.com

Frank Hsu   frank.hsu@mediatek.com

Thomas Pare

MediatekUSA

2860 Junction Ave, San Jose, CA 95134, USA

+1-408-526-1899 thomas.pare@mediatek.com

ChaoChun Wang   chaochun.wang@mediatek.com

James Wang   james.wang@mediatek.com

Jianhan Liu Jianhan.Liu@mediatek.com

Tianyu Wu tianyu.wu@mediatek.com

Russell Huang  russell.huang@mediatek.co

m

Eric Wong

AppleCupertino, CA

 

+1-408-9745967 ericwong@apple.com

Chris Hartman    

Aon Mujtaba    

Joonsuk Kim   joonsuk@apple.com 

Guoqing Li +1-408-974-9164  guoqing_li@apple.com 

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission

September, 2015

Slide 8

Authors (continued)Name Affiliation Address Phone Email

Weimin Xing

ZTE Corp.

Xing.weimin@zte.com.cn

Kaiying Lv lv.kaiying@zte.com.cn

Ke Yao Yao.ke@zte.com.cn

Bo Sun Sun.bo1@zte.com.cn

Yonggang Fang ZTE TX yfang@ztetx.com

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission Slide 9

Background

• P matrix coded HE-LTF was adopted in last meeting [1] – Maximize legacy reuse

• Adding details, we propose HE-LTF sequences for uplink multiuser MIMO

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 10

Problem Statement

• In uplink multiuser MIMO, different UL users have different carrier frequency offsets

• AP may want to estimate the CFOs for demodulating data and mitigating multiuser interference

• For the CFO estimation, per-stream phase offsets at different LTF symbol instants need to be obtained

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 11

Proposed Solution

• Assign orthogonal LTF sequences to different streams within the UL MU-MIMO burst

– Exploit frequency domain correlation– Per-stream channel responses can be estimated for each

LTF symbol – CFO can be estimated by checking the phase difference

between the channel estimates obtained at different LTF symbols

• Additional benefit — No need to insert pilot tones in LTF symbols

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 12

Generating LTF sequences• Generated from P matrix

– Scramble a common sequence by different rows of P matrix• Piecewise orthogonal

– Sub-sequences with any K (e.g. 4) contiguous entries are orthogonal

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

Cyclic Orthogonality

• Orthogonal sequences of any length can be generated by exploiting cyclic orthogonality among P matrix rows– E.g. 2 users with 26 tones and K=4

Slide 13

L1 L2 L3 L4User 1 L21 L22 L23 L24…

L25 L26

X X

L1 L2 L3 L4User 2 L21 L22 L23 L24…

L25 L26

X X

orthogonal

[1 -1]

[1 1]

X

X

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

Orthogonal Tone Blocks

• By exploiting cyclic orthogonality, we have many orthogonal tone blocks generating data samples for CFO estimation

Slide 14

S1(1)

S1(2)

S1(3)

S1(4)

S1(5)

S1(6)

S1(7)

S1(8)

S1(9)User 1

S2(1)

S2(2)

S2(3)

S2(4)

S2(5)

S2(6)

S2(7)

S2(8)

S2(9)User 2

Orthogonal tone block 1

Orthogonal tone block 2

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission Slide 15

LTF symbols of stream k

TimeLTF symbol 1 LTF symbol 2

Subcarrier 1

Subcarrier 2

Si(k) Cj(k)

Stream index

LTF symbol indexTone index

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Sequence common to all streams

doc.: IEEE 802.11-15/0602r6

Submission

LTF symbols of multiple streams• Orthogonal sequences are applied to different streams on each tone block

Orthogonal sequences

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 16

doc.: IEEE 802.11-15/0602r6

Submission

CFO Estimation• Channel response remains roughly constant over each tone block • Phase response is estimated from each tone block• CFO is estimated by averaging the phase rotation rate over tone

blocks and Rx antennas

Orthogonal sequences

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 17

doc.: IEEE 802.11-15/0602r6

Submission

One P matrix for all

• Since the 8×8 P matrix consists of orthogonal 2×2 and 4×4 sub-matrixes, we can use the rows of 8×8 P matrix to define LTF sequences for up to 8 streams

Qinghua Li, Xiaogang Chen, et al.

September, 2015

=

=

Slide 18

doc.: IEEE 802.11-15/0602r6

Submission

Simulation Assumptions

• Uplink MU-MIMO• 8 Rx antennas at AP, 4/6 STAs each sending 1 stream• MCS7/MCS4; 20 MHz bandwidth; ChDNLoS/UMiNLoS• CFO error is modeled as +CFO/-CFO with fixed value• Timing offset is uniformly distributed over [0, Toff ns] for each STA

• CSD value follows 11ac & 11ax larger CSD(TBD)• Per STA pilot tracking is enabled• CFO is estimated and compensated for the proposed new LTF sequence• Channel smoothing is not applied• 4x/2x (3.2us/1.6us GI) LTF is used

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 19

doc.: IEEE 802.11-15/0602r6

Submission

CFO Tolerance

Tolerate +/- 400 Hz CFO within negligible degradation to ideal and >3 dB improvement over legacy

20 21 22 23 24 25 26 27 28 29 3010

-4

10-3

10-2

10-1

100

DNLoS; 8Rx@AP; 4STA; MCS7

SNR(dB)

PE

R

Freqoff 0Hz/11ac LTF

Freqoff 400Hz/new LTF

Freqoff 400Hz/11ac LTFFreqoff 200Hz/new LTF

Freqoff 200Hz/11ac LTF

3.5dB

0.15dB

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 20

doc.: IEEE 802.11-15/0602r6

Submission

Timing Offset Tolerance

Tolerate 1 μs timing offset at 10% PER with sub-dB degradation to ideal and 3 dB improvement over legacy

20 22 24 26 28 30 3210

-3

10-2

10-1

100

DNLoS; 8Rx@AP; 4STA; MCS7

SNR(dB)

PE

R

Freqoff 0Hz/11ac LTF

Freqoff 400Hz/new LTF 0nsToff

Freqoff 400Hz/11ac LTF 0nsToffFreqoff 400Hz/new LTF 1usToff

Freqoff 400Hz/11ac LTF 1usToff

Within 1 dB

3 dB

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 21

doc.: IEEE 802.11-15/0602r6

Submission

Robust to Frequency Selectivity

Work fine in outdoor channels

Slide 22

14 15 16 17 18 19 20 21 2210

-3

10-2

10-1

100

MCS4;UMiNLoS

SNR(dB)

PE

R

Freqoff 0Hz/ 11ac LTF/0ns Toff

Freqoff 400Hz/ new LTF/600ns ToffFreqoff 400Hz/ 11ac LTF/600ns Toff

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

With per-stream CSD

Work fine with CSD

Slide 23

28 29 30 31 32 33 3410

-4

10-3

10-2

10-1

100

ChD; 6x8; CSD; MCS7

SNR(dB)

PE

R

w/o CFO; w/o CSD

400Hz CFO; 11ac CSD [0 -400 -200 -600 -350 -650]400Hz CFO; 11ax CSD [0 -800 -400 -1000 -600 -1200]

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

2x LTF

Work fine with 2x LTFs

Slide 24 Qinghua Li, Xiaogang Chen, et al.

September, 2015

20 22 24 26 28 30 3210

-3

10-2

10-1

100

ChD 4STA 2x

SNR(dB)

PE

R

Freqoff 0Hz/ 11ac LTF

Freqoff 400Hz/ new LTF

Freqoff 400Hz/ 11ac LTF

2dB

doc.: IEEE 802.11-15/0602r6

Submission

UL transmission with beamforming• 20MHz channel• STA: 2 Tx ant. with

ideal beamforming• AP: 8 Rx ant.• 4 STAs

September, 2015

Qinghua Li, Xiaogang Chen, et al.Slide 25

20 21 22 23 24 25 2610

-3

10-2

10-1

100

SNR(dB)

PE

R

4STAs(2Tx->8Rx); ChD; MCS7

2Tx BF w/o CFO

2Tx BF CFO 400Hz

• Rank inverse in BF may cause phase discontinuity, which will break the orthogonality in frequency domain.

• The observation is rank inverse does not occur frequently. Even it happens, only limited samples are affected.

0.3 dB

doc.: IEEE 802.11-15/0602r6

Submission

UL transmission with power offset

• Stronger stream may leak power to the weaker stream due to non-ideal orthogonality;• The CFO estimation is not impacted too much if the power leakage is within moderate range.

– We see some obvious impact for power offset > 10dB

September, 2015

Qinghua Li, Xiaogang Chen, et al.Slide 26

26 27 28 29 30 31 32 33 34 3510

-3

10-2

10-1

100

SNR(dB)

PE

R

6STAs; 8Rx@AP; ChD MCS7

-10dB w/o CFO

-10dB CFO 400Hz-6dB w/o CFO

-6dB CFO 400Hz

• STA: 1 Tx ant. • AP: 8 Rx ant.• 4 STAs received with

0dB power• 1 STA received with -

10dB power• 1 STA received with -

6dB power

0.2 dB0.2 dB

doc.: IEEE 802.11-15/0602r6

Submission

PAPR Issue

• Use fixed point simulation to evaluate if the dynamic range increase in HE-LTF impacts the overall performance (10/6bits quantization is considered);

• The PAPR increase in the masked LTF has marginal impact to the overall performance.– PAPR in the data part is the bottleneck.

September, 2015

Qinghua Li, Xiaogang Chen, et al.Slide 27

21 22 23 24 25 26 2710

-4

10-3

10-2

10-1

100

SNR[dB]

PE

R

4STAs; 8Rx; MCS7 DNLoS

Masked LTF 10bit quantization

11ac LTF 10bit quantization

Masked LTF 6bit quantization11ac LTF 6bit quantization

Unquantized

-4 -3 -2 -1 0 1 210

-3

10-2

10-1

100

SNR[dB]

PE

R

4STAs; 8Rx; MCS0 DNLoS

11ac LTF 10bit quantization

Masked LTF 10bit quantization

doc.: IEEE 802.11-15/0602r6

Submission

Summary

• UL MU-MIMO CFO estimation is enabled by assigning orthogonal LTF sequences to different streams

– Optimal performance– Maximum reuse of legacy design– Low complexity

• Propose to use the rows of 8×8 P matrix as the masking sequences for generating the orthogonal HE-LTF sequences for UL MU-MIMO

Qinghua Li, Xiaogang Chen, et al.

September, 2015

Slide 28

doc.: IEEE 802.11-15/0602r6

Submission

Reference

Slide 29

[1] “Specification Framework for TGax,” doc.: IEEE 802.11-15/0132r4, Section 3.2, March 2015

Qinghua Li, Xiaogang Chen, et al.

September, 2015

doc.: IEEE 802.11-15/0602r6

Submission

Straw Poll 1

• Do you agree to add to TGax Specification Framework Document? – The HE-LTF sequences for UL MU-MIMO shall be generated as follows.

For each stream, a common sequence shall be masked repeatedly in a piece-wise manner by a distinct row of an 8x8 orthogonal matrix. When the length of the LTF sequence is not divisible by 8, the last M elements of the LTF sequence (M being the remainder after the division of LTF length by 8) shall be masked by the first M elements of the orthogonal matrix row.

– Yes– No– Abstain

Slide 30

September, 2015

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission

• Do you agree to add to TGax Specification Framework Document? – The orthogonal matrix used to mask the HE-LTF sequence in SP1 is the

8x8 Pmatrix used in 11ac.

September, 2015

Qinghua Li, Xiaogang Chen, et al.Slide 31

Straw Poll 2

doc.: IEEE 802.11-15/0602r6

Submission

Backup

Slide 32

September, 2015

Qinghua Li, Xiaogang Chen, et al.

doc.: IEEE 802.11-15/0602r6

Submission

September, 2015

Qinghua Li, Xiaogang Chen, et al.Slide 33

21 22 23 24 25 26 27 21 22 23 2410

-3

10-2

10-1

100

SNR[dB]

PE

R4STAs; 8Rx; MCS7 DNLoS

Unquantized

11ac LTF 10bitMasked LTF 10bit