Doc.: IEEE 802.11-10/0432r2 Submission May 2010 Slide 1 PHY/MAC Complete Proposal to TGad Date:...

Post on 01-Apr-2015

229 views 10 download

Tags:

Transcript of Doc.: IEEE 802.11-10/0432r2 Submission May 2010 Slide 1 PHY/MAC Complete Proposal to TGad Date:...

doc.: IEEE 802.11-10/0432r2

Submission

May 2010

Slide 1

PHY/MAC Complete Proposal to TGadDate: 2010-05-18

Author(s)/Supporter(s):

Name Company Address Phone email

Abu-Surra, Shadi Samsung sasurra@sta.samsung.com

Ban, Koichiro Toshiba koichiro.ban@toshiba.co.jp

Banerjea, Raja Marvell rajab@marvell.com

Basson, Gal Wilocity gal.basson@wilocity.com

Blanksby, Andrew Broadcom andrew.blanksby@broadcom.com

Borges, Daniel Apple drborges@apple.com

Borison, David Ralink david_borison@ralinktech.com

Cariou, Laurent Orange laurent.cariou@orange-ftgroup.com

Chamberlin, Philippe Technicolor R&I philippe.chambelin@technicolor.com

Chang, Kapseok ETRI kschang@etri.re.kr

Chin, Francois I2R chinfrancois@i2r.a-star.edu.sg

Choi, Changsoon IHP GmbH choi@ihp-microelectronics.com

Christin, Philippe Orange philippe.christin@orange-ftgroup.com

Chu, Liwen STMicroelectronics Liwen.chu@st.com

Chung, Hyun Kyu ETRI hkchung@etri.re.kr

Coffey, Sean Realtek coffey@realtek.com

Cordeiro, Carlos Intel Carlos.Cordeiro@intel.com

Derham, Thomas Orange thomas.derham@orange-ftgroup.com

Dorsey, John Apple jdorsey@apple.com

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

May 2010

Slide 2

Author(s)/Supporter(s):Name Company Address Phone email

Elboim, Yaron Wilocity yaron.elboim@wilocity.comFischer, Matthew Broadcom mfischer@broadcom.comGiraud, Claude NXP claude.giraud@nxp.comGlibbery, Ron Peraso Technologies ron@perasotech.com

Golan, Ziv Wilocity Ziv.golan@wilocity.comGong, Michelle Intel Michelle.x.gong@intel.com

Grandhi, Sudheer InterDigital sagrandhi802@gmail.comGrass, Eckhard IHP GmbH grass@ihp-microelectronics.comGrieve, David Agilent david_grieve@agilent.com

Grodzinsky, Mark Wilocity Mark.grodzinsky@wilocity.comHansen, Christopher Broadcom chansen@broadcom.com

Hart, Brian Cisco brianh@cisco.comHassan, Amer Microsoft amerh@microsoft.com

Hong, Seung Eun ETRI iptvguru@etri.re.krHosoya, Kenichi NEC k-hosoya@ce.jp.nec.comHosur, Srinath Texas Instruments hosur@ti.com

Hsu, Alvin MediaTek alvin.hsu@mediatek.comHsu, Julan Samsung Julan.hsu@samsung.com

Hung, Kun-Chien MediaTek kc.hung@mediatek.comJain, Avinash Qualcomm avinashj@qualcomm.com

Jauh, Alan MediaTek alan.jauh@mediatek.comJayabal, Raymond Jararaj s/o I2R jraymond@i2r.a-star.edu.sg

Jeon, Paul LGE bjjeon@lge.comJin, Sunggeun ETRI sgjin@etri.re.kr

Jones, VK Qualcomm vkjones@qualcomm.comJoseph, Stacy Beam Networks stacy@beamnetworks.com

Jun, Haeyoung Samsung Haeyoung.jun@samsung.comKaaja, Harald Nokia harald.kaaja@nokia.comKafle, Padam Nokia padam.kafle@nokia.com

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

Author(s)/Supporter(s):Name Company Address Phone email

Kakani, Naveen Nokia naveen.kakani@nokia.comKasher, Assaf Intel Assaf.kasher@intel.comKasslin, Mika Nokia mika.kasslin@nokia.comKim, Hodong Samsung hodong0803.kim@samsung.comKim, Yongsun ETRI doori@etri.re.krKraemer, Rolf IHP GmbH kraemer@ihp-microelectronics.comKreifeldt, Rick Harman International rick.kreifeldt@harman.comKwon, Edwin Samsung cy.kwon@samsung.com

Kwon, Hyoungjin ETRI kwonjin@etri.re.krKwon, Hyukchoon Samsung hyukchoon.kwon@samsung.com

Laine, Tuomas Nokia tuomas.laine@nokia.comLakkis, Ismail Tensorcom ilakkis@tensorcom.comLee, Hoosung ETRI hslee@etri.re.kr

Lee, Keith AMD keith.lee@amd.comLee, Wooyong ETRI wylee@etri.re.kr

Liu, Yong Marvell yongliu@marvell.comLou, Hui-Ling Marvell hlou@marvell.comLynch, Brad Peraso Technologies brad@perasotech.com

Majkowski, Jakub Nokia jakub.majkowski@nokia.comMarin, Janne Nokia janne.marin@nokia.com

Maruhashi, Kenichi NEC k-maruhashi@bl.jp.nec.comMatsumoto, Taisuke Panasonic matsumoto.taisuke@jp.panasonic.com

Meerson, Yury Wilocity Yury.meerson@wilocity.comMese, Murat Broadcom mesem@broadcom.com

Montag, Bruce Dell bruce_montag@dell.comMyles, Andrew Cisco amyles@cisco.com

Nandagopalan, Saishankar Broadcom nsai@broadcom.comNgo, Chiu Samsung Chiu.ngo@samsung.com

Nikula, Eero Nokia eero.nikula@nokia.com

Slide 3

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

Author(s)/Supporter(s):Name Company Address Phone email

Park, DS Samsung dspark@samsung.comPark, Minyoung Intel Minyoung.park@intel.comPeng, Xiaoming I2R pengxm@i2r.a-star.edu.sg

Pi, Zhouyue Samsung zpi@sta.samsung.comPonnampalam, Vish MediaTek vish.ponnampalam@mediatek.com

Prasad, Narayan NEC prasad@nec-labs.comPrat, Gideon Intel Gideon.prat@intel.comQu, Xuhong I2R quxh@i2r.a-star.edu.sg

Ramachandran, Kishore NEC kishore@nec-labs.comRaymond, Yu Zhan Panasonic Raymond.Yuz@sg.panasonic.com

Roblot, Sandrine Orange sandrine.roblot@orange-ftgroup.comRonkin, Roee Wilocity Roee.ronkin@wilocity.comRozen, Ohad Wilocity Ohad.rozen@wilocity.com

Sachdev, Devang NVIDIA dsachdev@nvidia.comSadri, Ali Intel Ali.S.Sadri@intel.com

Sampath, Hemanth Qualcomm hsampath@qualcomm.comSanderovich, Amichai Wilocity Amichai.sanderovich@wilocity.com

Sankaran, Sundar Atheros Sundar.Sankaran@Atheros.comScarpa, Vincenzo STMicroelectronics vincenzo.scarpa@st.com

Seok, Yongho LGE yongho.seok@lge.comShao, Huai-Rong Samsung hr.shao@samsung.comShen, Ba-Zhong Broadcom bzshen@broadcom.com

Sim, Michael Panasonic Michael.Simhc@sg.panasonic.comSingh, Harkirat Samsung har.singh@sisa.samsung.comSoffer, Menashe Intel Menashe.soffer@intel.comSong, Seungho SK Telecom shsong@sktelecom.com

Slide 4

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

Author(s)/Supporter(s):Name Company Address Phone email

Sorin, Simha Wilocity Simha.sorin@wilocity.comSmith, Matt Atheros matt.smith@atheros.com

Stacey, Robert Intel Robert.stacey@intel.comSubramanian, Ananth I2R sananth@i2r.a-star.edu.sg

Sutskover, Ilan Intel Ilan.sutskover@intel.comTaghavi, Hossain Qualcomm mtaghavi@qualcomm.com

Takahashi, Kazuaki Panasonic takahashi.kazu@jp.panasonic.comToyoda, Ichihiko NTT toyoda.ichihiko@lab.ntt.co.jp

Trachewsky, Jason Self jtrachewsky@gmail.comTrainin, Solomon Intel Solomon.trainin@intel.com

Usuki, Naoshi Panasonic usuki.naoshi@jp.panasonic.comVarshney, Prabodh Nokia prabodh.varshney@nokia.com

Vertenten, Bart NXP bart.vertenten@nxp.comVlantis, George STMicroelectronics george.vlantis@st.com

Wang, Chao-Chun MediaTek chaochun.wang@mediatek.comWang, Homber TMC homber@emcite.comWang, James MediaTek james.wang@mediatek.com

Wong, David Tung Chong I2R wongtc@i2r.a-star.edu.sgYee, James MediaTek james.yee@mediatek.com

Yucek, Tevfik Atheros Tevfik.Yucek@Atheros.comYong, Su Khiong Marvell skyong@marvell.comZhang, Hongyuan Marvell hongyuan@marvell.com

Slide 5

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

Proposal overview

• This presentation is part and in support of the complete proposal described in 802.11-10/432r2 (slides) and 802.11-10/433r2 (text) that:– Supports data transmission rates up to 7 Gbps

– Supplements and extends the 802.11 MAC and is backward compatible with the IEEE 802.11 standard

– Enables both the low power and the high performance devices, guaranteeing interoperability and communication at gigabit rates

– Supports beamforming, enabling robust communication at distances beyond 10 meters

– Supports GCMP security and advanced power management

– Supports coexistence with other 60GHz systems

– Supports fast session transfer among 2.4GHz, 5GHz and 60GHz

May 2010

Slide 6 Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

doc.: IEEE 802.11-10/0432r2

Submission

Proposal presentation plan

ID Item Type Subclauses from 802.11-

10/433r2Doc#

1 Complete proposal overviewComplete

proposal (CP) High-level proposal

overviewSlides: 802.11-10/0432r2Text: 802.11-10/0433r2

2 MAC (Channel Access & QoS)New Technique

(NT)7, 9.1-9.23, 9.26-9.27,

11.3-11.7802.11-10/0441

3 MAC (SFS & BSS mngmt) NT 7, 9.24, 11.22-11.29, 11.31-11.33, 11.35

802.11-10/0443

4 MAC (Sync & power saving) NT 7, 11.1, 11.2 802.11-10/0446

5 MAC (Link maintenance) NT 7, 11.8, 11.9, 11.10, 11.30 802.11-10/0445

6 Security NT 8 802.11-10/0438

7 FST NT 11.34 802.11-10/0436

8 PHY (Intro./SC) NT All in 21, except 21.3.6,

21.5, 21.7 802.11-10/0429

9 PHY (OFDM) NT 21.5 802.11-10/0440

10 PHY (CP) NT 21.3.6 802.11-10/0439

11 BF (SLS) NT All in 9.25 except 9.25.2, 9.25.5.3, 9.25.5.4, 9.25.6

802.11-10/0430

12 BF (BRP) NT 9.25.2, 9.25.5.3, 9.25.5.4,

9.25.6, 21.7 802.11-10/0450

13 Relay operation NT 11.37 802.11-10/0494

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 7

Thispresentation

doc.: IEEE 802.11-10/0432r2

Submission

• To meet the TGad PAR, FRD, EVM and selection procedure requirements, the following additional supporting documents complement this proposal

• Therefore, this proposal meets all the requirements in the TGad selection procedure to be classified as a complete proposal

Additional proposal supporting documents

ID Item Doc#20 PAR, FRD and EVM declaration 802.11-10/0434

21MAC simulation results and

methodology802.11-10/0435

22PHY simulation results and

methodology802.11-10/0431

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 8

doc.: IEEE 802.11-10/0432r2

Submission

Item This complete proposal Subclause of 802.11-10/433r2

Network architecture Infra-BSS, IBSS, PBSS 5.2

Scheduled access Scheduled Service Periods 9.23.6

Contention access EDCA tuned for directional access 9.2

Dynamic allocation of resources

(Re-)allocation of channel time with support to P2P and directionality

9.23.7, 9.23.8, 9.23.9

Power save Non-AP STA and PCP power save 11.2.3

Security mechanism GCMP 8

Measurements Amendments to 802.11k to support directionality

11.33

PHY SC and OFDM, with common preamble 21

Beamforming Unified and flexible beamforming scheme 9.25

Fast session transfer Multi-band operation across 2.4GHz, 5GHz and 60GHz

11.34

Coexistence Provides coexistence with other 60GHz systems 11.35

Notable amendments to IEEE 802.11

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 9

doc.: IEEE 802.11-10/0432r2

Submission

MAC/PHY proposal overview

• Provides an unified and interoperable MAC/PHY across all mmWave implementations– Scalable across different usages, devices, and platforms– Adjustable to meet different power vs. performance trade-offs

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

Point Coordination

Function (PCF)

HCF Contention

Access (EDCA)

HCF Controlled

Access (HCCA)

Distributed Coordination Function (DCF)

FHSS, IR, DSSS, OFDM, HR/DSSS, ERP, or HT PHY

mmWave Channel Access

mmWave PHY

MACextent

AT Access

Contention-based Access

Service Period Access

A-BFT Access

Polled Access

Protocol architecture

2.4/5GHz 60GHzSlide 10

doc.: IEEE 802.11-10/0432r2

Submission

MAC

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 11

doc.: IEEE 802.11-10/0432r2

Submission

MAC challenges

• As discussed in 802.11-09/572r0, the primary challenge for the MAC is how to deal with directional communication, which is used to combat the high propagation loss in 60GHz– Device discovery becomes a non-trivial problem

– Devices need to find the direction for communication, which necessitates the support for beamforming (802.11-09/1153r2)

– 802.11 DCF has limitations in the presence of directionality

– How to exploit spatial frequency reuse in face of directional communication (802.11-09/782r0)

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 12

doc.: IEEE 802.11-10/0432r2

Submission

New MAC features(described in detail in separate presentations)

• A new network architecture named Personal Basic Service Set (PBSS), while retaining the existent 802.11 network architectures

• Channel access that support directionality and spatial frequency reuse, including both random access and scheduled access

• A unified and flexible beamforming scheme that can be tuned to simple, low power devices as well as complex devices

• Enhanced security (GCMP), link adaptation and power saving

• Multi-band support (fast session transfer)

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 13

doc.: IEEE 802.11-10/0432r2

Submission

The Personal BSS (PBSS)

• New network architecture in addition to infrastructure BSS and IBSS, which are also supported• PBSS is defined to address some unique usages and challenges of 60GHz communication

– Usages: Rapid sync-n-go file transfer, projection to TV/projector, etc.– Challenges: directional channel access, power saving, etc.– More details in 802.11-09/391r0

• Ad hoc network similar to the IBSS, but:

• A STA assumes the role of the PBSS Central Point (PCP)

• Only the PCP transmits beacon frames

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 14

802.11 MAC/PHY

802.11 Personal BSS

STA 1/PCP STA 2

doc.: IEEE 802.11-10/0432r2

Submission

The Beacon Interval (BI) structure

• Beacon time (BT): An access period during which one or more mmWave Beacon frames is transmitted

• Association beamforming training (A-BFT): An access period during which beamforming training is performed with a PCP or AP

• Announcement time (AT): A request-response based management access period during which a PCP or AP delivers non-MSDUs and provides access opportunities for STAs to return non-MSDUs

• Data transfer time (DTT): An access period during which frame exchanges are performed between STAs. The DTT is comprised of contention-based periods (CBPs) and service periods (SPs)

BI

Time

BT ATA-BFT

DTT

CBP 1 SP 1 SP 2 CBP 2

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 15

doc.: IEEE 802.11-10/0432r2

Submission

Channel access

• Channel access is coordinated using a schedule, which is delivered by the PCP/AP to non-PCP/non-AP STAs

• STAs are permitted to transmit data frames during contention-based periods (CBPs) and service periods (SPs)– Access during CBPs is based on EDCA fine-tuned for directional

access– Access during SPs is reserved to specific STAs as announced in

the schedule or granted by the PCP/AP

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 16

doc.: IEEE 802.11-10/0432r2

Submission

Fast session transfer (FST) support through multi-band operation

• Enables transition of communication of STAs from any band/channel to any other band/channel in which 802.11 is allowed to operate

• Supports both simultaneous and non-simultaneous operation• Supports both transparent and non-transparent FST

• In transparent FST, a STA uses the MAC same address in both bands/channels involved in the FST• In non-transparent FST, the MAC addresses are different

• Several improvements to speed-up the FST switching time such as transparent FST, security key establishment prior to FST, TS operation over multiple bands, and Block Ack operation over multiple bands

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 17

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

Beamforming (BF)

• A unified and flexible BF protocol is proposed that can be tuned to simple, low power devices as well as complex devices• Same protocol is used for PCP/AP-to-STA beamforming and

STA-to-STA beamforming

• BF comprised of two independent phases: sector level sweep (SLS) phase and beam refinement protocol (BRP) phase• SLS: enables communication at the control PHY rate (MCS0), and

typically only provides transmit training• BRP: enables receiver training and iterative refinement of the

AWV of both transmitter and receiver

• Support for beam tracking during data communication

Slide 18 Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

BF training examples

• Two phased arrays

• Two transmit sector sweeps followed by a beam refinement

• During a transmit sector sweep, the receiver may be using a quasi-omni receive pattern

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

• Initiator has a phased array, responder has a single antenna

• During the receive sector sweep, the responder transmit a sector sweep many times from its single antenna. The initiator switches receive pattern every packet.

Slide 19

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

Coexistence with other 60GHz systems• Proposal enables fair sharing of resources with 15.3c• The same channelization as other 60GHz systems is used, and the same SC chip rate as that

of 15.3c CMS is adopted• As required in the TGad EVM (802.11-09/296r16), an AP should not start a BSS where the

signal level is above a threshold or upon detecting a 15.3c CMS preamble at >= -60 dBm– In 802.11a/n, MCS 0 (BPSK, R=1/2) receive sensitivity is -82dBm and non-802.11 detection level is -62

dBm → 20 dB difference– In 60GHz, SC MCS 1 receive sensitivity is -68 dBm → 8 dB difference with respect to required 802.15.3c

CMS preamble detection threshold– Requirement of detection of 802.15.3c CMS preamble is 12dB more stringent than 802.11a/n and non-

802.11 detection!

• STAs can perform channel measurements and report results to AP/PCP• Several mechanisms can be used to mitigate interference with other 60GHz systems,

including:– Change operating channel, beamforming, reduce transmit power, move the BT (and thus the BI) in case of

an AP or PCP, change or request the change of scheduled SPs and CBPs in the BI, defer transmission for a later time

Slide 20 Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

PHY

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 21

doc.: IEEE 802.11-10/0432r2

Submission

Agenda• Channelization• PHY Overview

– PHY general parameters

• Common Preamble Preview– Golay sequences– Preamble structure

• Short preamble• CEF

• Coding scheme-LDPC• Single Carrier modulation

– Control MCS– Single carrier MCS set– Single carrier low power mode

• OFDM modulation• RF General parameters

Slide 22 Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

Channelization

Channel separation 2160MHzSame channelization as 15.3c, compatible Mask Requirement for coexistence

Channel ID

Center Freq.(GHz)

Channel width(GHz)

OFDM Sampling Rate (MHz)

SC Chip Rate (MHz)

1 58.32 2.16 2640 1760

2 60.48 2.16 2640 1760

3 62.64 2.16 2640 1760

4 64.80 2.16 2640 1760

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 23

doc.: IEEE 802.11-10/0432r2

Submission

PHY Overview

• Unified and interoperable PHY

– Common preamble

– Common MCS

– Common coding

• Different MCS sets for different usages: OFDM and SC

– OFDM MCSs for high performance on frequency selective channels up to 64 QAM

– SC modulation for low power/low complexity transceivers • SC MCS for control signaling (Channel, SNR durability)

• SC Low Power MCS set– Simpler coding and shorter symbol structure to enable low power

implementation

• Embedded support in BF

• Different presentation (802.11-10/0430r0, 802.11-10/0450r0)

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 24

doc.: IEEE 802.11-10/0432r2

Submission

PHY Parameters

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 25

doc.: IEEE 802.11-10/0432r2

Submission

PHY General parameters• Sampling rate

• SC PHY MCS set Symbol Rate = 1760MHz

• OFDM MCS set Sampling Rate = 2640 MHz• Sampling Rate is Exactly 1.5x the SC symbol rate

• SC block – 512 symbols of which 64 chips GI

• OFDM nominal sample rate 2640MHz = 1.5 times SC symbol rate• 512 samples FFT

• 128 samples GI

• 336 data subcarriers

• 16 pilot subcarriers

• Common Packet Structure

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 26

doc.: IEEE 802.11-10/0432r2

Submission

Common Preambles

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 27

doc.: IEEE 802.11-10/0432r2

Submission

Complementary sequences

• Time domain channel estimation

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 28

0 100 200 300 400 500 600 700-50

0

50

100

150Ra

0 100 200 300 400 500 600 700-50

0

50

100

150Rb

0 100 200 300 400 500 600

0

50

100

150

200

250

Ra+Rb= delta(t)

a H a*h Golay Correlator

Ra=a*a*h

b H b*h Golay Correlator

Rb=b*b*h

( ) ( )a a h b b h a a b b h k h h

0

0

1 1

1 1

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )n n n n n

n n n n n

a i i

b i i

a i W a i b i S

b i W a i b i S

1SZ

1W

+

-

1a

1b

2SZ

2W

+

-2b

1NSZ

1NW

+

-

1Na 2a

1Nb

( )k

0 1 12 , 2 ,..., 2

1, 1

N

i

S permutation of

W

1*

0

1*

0

1 0( ) ( ) ( )

0

( ) ( ) ( )

( ) ( ) ( )

a b

N k

an

N k

bn

for kR k R k k

else

R k a n a n k

R k b n b n k

doc.: IEEE 802.11-10/0432r2

Submission

Short Preambles

• Complementary sequences are used to differentiate control MCS and high rate MCSs– 38 repetition for CP

– 14 repetition for SC/OFDM

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 29

CP:

Gb128 Gb128

STF=38xGb128, -Gb, -Ga CEF

… -Gb128

High rate:

Ga128 Ga128

STF=14xGa128,-Ga CEF

… -Gb128

-Gb128 -Ga128

-Ga128

doc.: IEEE 802.11-10/0432r2

Submission

Common Preamble

• Transmitted using π/2-BPSK at SC symbol rate

• Short Training field composed of 15 repetitions of a 128 samples Golay sequence

• Channel Estimation based on 512 points complementary sequences followed by a guard interval

Ga128 Ga128 Ga128 Ga128 Ga128 Ga128 Ga128 -Ga128 Gu512 Gv512

Short Training Field (STF) 1920 Tc Channel Estimation Field (CEF) 1152 Tc

Gv128

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 30

doc.: IEEE 802.11-10/0432r2

Submission

SC/OFDM Channel Estimation Sequence

• The use of SC/OFDM MCS set is signaled using the CEF pattern as shown below

SC:

Ga128 -Ga128

STF CEF

u512 v512

… -Ga128 Gb128 -Ga128-Gb128 Ga128 -Gb128 -Gb128-Ga128-Gb128

v128

OFDM:

STF CEF

v512 u512

… -Gb128

v128

-Ga128Ga128 Ga128 -Gb128 -Ga128-Gb128 -Ga128 Gb128 -Ga128-Gb128

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 31

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Coding

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 32

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Code Set Overview

• Four codes of common codeword length of 672

• Cyclic shifted identity (CSI) construction

• Submatrix size 42

• Excellent coding gain on realistic channels

• Construction supports high throughput implementation

• Single construction supports code rates of 1/2, 5/8, 3/4, and 13/16

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 33

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Code Set Implementation

• Low complexity / low latency encoding– Shared terms in systematic product calculation across all codes

– Back substitution for parity calculation

• High throughput / low power decoding– Layer decoding

• Each code matrix H has 4 layers with a single set element per column

• 4 clock cycles per decoder iteration

– Fully parallel belief propagation decoding• Code set super-position matrix has single CSI value per location which

minimizes decoder multiplexing and routing

• 1 clock cycle per decoder iteration

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 34

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Matrices40 38 13 5 18

34 35 27 30 2 1

36 31 7 34 10 41

27 18 12 20 15 6

35 41 40 39 28 3 28

29 0 22 4 28 27 23

31 23 21 20 12 0 13

22 34 31 14 4 13 22 24

20 36 34 31 20 7 41 34 10 41

30 27 18 12 20 14 2 25 15 6

35 41 40 39 28 3 28

29 0 22 4 28 27 24 23

31 23 21 20 9 12 0 13

22 34 31 14 4 22 24

35 19 41 22 40 41 39 6 28 18 17 3 28

29 30 0 8 33 22 17 4 27 28 20 27 24 23

37 31 18 23 11 21 6 20 32 9 12 29 0 13

25 22 4 34 31 3 14 15 4 14 18 13 13 22 24

29 30 0 8 33 22 17 4 27 28 20 27 24 23

37 31 18 23 11 21 6 20 32 9 12 29 10 0 13

25 22 4 34 31 3 14 15 4 2 14 18 13 13 22 24

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 35

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Code Set Performance on AWGN

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 36

doc.: IEEE 802.11-10/0432r2

Submission

LDPC Code Set Performance• OFDM with QPSK modulation on 3ns Exp Decaying PDP

Channel

• 20 iterations floating point belief propagation decoding

4 6 8 10 12 14 16 1810

-8

10-7

10-6

10-5

10-4

10-3

SNR (dB)

BLE

R

Rate-1/2

Rate-5/8Rate-3/4

Rate-13/16

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 37

doc.: IEEE 802.11-10/0432r2

Submission

SC MCS 0: Control MCS

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 38

doc.: IEEE 802.11-10/0432r2

Submission

Control MCS• Very low SNR modem to allow pre-beamforming link• Control MCS based on SC modulation ~27.5 Mbps• π/2 32 Golay spreading sequence• Differential encoding• Short rate 1/2 LDPC code using the existing rate 3/4 LDPC code

– Effective shorter block size-336 bits

• Spreading mitigates long channels• Differential encoding allows shorter preambles, and results in a

robust modem in the presence of phase noise• Short LDPC code is efficient for short packets• Bits are evenly divided between codewords to allow equal protection• A-MPDU aggregation is not allowed using Control MCS• Maximum length is limited to 1024 bytes

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 39

doc.: IEEE 802.11-10/0432r2

Submission

Control MCS Performance

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 40

Simulation Conditions:

• Packet Length-256 Bytes• AWGN• No impairments

doc.: IEEE 802.11-10/0432r2

Submission

Single Carrier MCS Set

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 41

doc.: IEEE 802.11-10/0432r2

Submission

SC Modulation

MCS Index Modulation NCBPS Repetition Code RateData Rate

(Mbps)

0 π/2-DBPSK 1/2 27.51 π/2-BPSK 1 2 1/2 3852 π/2-BPSK 1 1 1/2 7703 π/2-BPSK 1 1 5/8 962.54 π/2-BPSK 1 1 3/4 11555 π/2-BPSK 1 1 13/16 1251.256 π/2-QPSK 2 1 1/2 15407 π/2-QPSK 2 1 5/8 19258 π/2-QPSK 2 1 3/4 23109 π/2-QPSK 2 1 13/16 2502.5

10 π/2-16QAM 4 1 1/2 308011 π/2-16QAM 4 1 5/8 385012 π/2-16QAM 4 1 3/4 4620

Mandatory

• 448 chips per symbol

• 64 chips constant GI• Tracking purposes

• Can be used for equalization

• Pi/2 rotation applied to all modulations

• • To reduce PAPR for BPSK

• To enable GMSK equivalent modulation

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 42

doc.: IEEE 802.11-10/0432r2

Submission

6 7 8 9 10 11 12 13 14 15 1610

-2

10-1

100

RX SNR (dB)

PE

R

mcs=10mcs=11

mcs=12

mcs=10

mcs=11mcs=12

SCM Performance-AWGN

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 43

Simulation Conditions:

• Packet Length-8192 Bytes• AWGN • Red line-With impairments (PN, PA)• Blue line-no impairments

-3 -2 -1 0 1 2 3 4 510

-2

10-1

100

RX SNR (dB)P

ER

mcs=1mcs=2

mcs=3

mcs=4

mcs=5mcs=1

mcs=2

mcs=3

mcs=4mcs=5

2 3 4 5 6 7 8 9 1010

-2

10-1

100

RX SNR (dB)

PE

R

mcs=6

mcs=7mcs=8

mcs=9

mcs=6

mcs=7mcs=8

mcs=9

BPSK MCSs

QPSK MCSs16QAM MCSs

doc.: IEEE 802.11-10/0432r2

Submission

SC Low Power MCS set

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 44

doc.: IEEE 802.11-10/0432r2

Submission

Low Power SC Mode Motivation

• Targets:– Peak power for the entire solution including PHY, MAC, Memory, RF,

IOs, peripheral < 500 mW (e.g., USB 2.0)

– Average power of PHY/MAC < 150 mW

– Maximum delay spread for a 2 m range is in the order of 5 ns

• Therefore, there is a need for a low complexity low power mode that satisfies these requirements:– Simple FEC:

• Reed Solomon (224,208) for high data rate

• Outer Reed Solomon (224,208) + Inner Hamming like block code(16,8) for medium data rate

– Simple Equalizer for very short multipath

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 45

doc.: IEEE 802.11-10/0432r2

Submission

SC Low Power MCS set

• The FEC is one of the major contributor to the relatively high power consumption of the current SC mode

• Simple FEC: – Reed Solomon (224, 208) for high data rate– Outer Reed Solomon (224, 208) + Inner Hamming like block code (16,8) for medium

data rate

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 46

May 2010

doc.: IEEE 802.11-10/0432r2

Submission

Low Power Mode Blocking

• Compatible and built upon current SC mode

• Block size is 64 chips

• Sampling rate of 1.76GHz

PreamblePreamble HeaderHeader DataData

STFSTFGa128 x 15;-GaGa128 x 15;-Ga SC CEFSC CEF

~ 0.655 μs~ 1.091 μs

~ 1.745 μs

Ga64Ga64 d56d56 G8G8 d56d56 G8G8 d56d56 G8G8

~ 218.18 ns

Block 2 Block 3 Block 7Block 1

Block-512Block-512 Block-512Block-512 Block-512Block-512 Ga64Ga64... ... ...

Ga64Ga64 d56d56 G8G8 d56d56 G8G8

Block 2 Block 7Block 1...

Ga64Ga64 d448d448

LP MCS set

Current SC

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 47

doc.: IEEE 802.11-10/0432r2

Submission

Low Power MCS Performance

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 48

Simulation Conditions:

• Packet Length-4096 Bytes• AWGN-Upper Figure• 1ns RMS Delay Spread-Lower Figure• No impairments

0 1 2 3 4 5 6 7 8

10-4

10-3

10-2

10-1

100

SNRdB

FE

R

Frame Error Rate vs. SNR (4K octets frames)

RS(224,208)+Block(16,8) - AWGN

RS(224,208)- AWGN

0 2 4 6 8 10 12 14 16 1810

-4

10-3

10-2

10-1

100

SNRdB

FE

R

Frame Error Rate vs. SNR (4K octets frames)

RS(224,208)+Block(16,8) - Multipath

RS(224,208)- Multipath

doc.: IEEE 802.11-10/0432r2

Submission

OFDM MCS set

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 49

doc.: IEEE 802.11-10/0432r2

Submission

OFDM Modulation

• 512 points FFT

• GI length of 128

• Symbol interleaver for 16 QAM and 64 QAM

• 16 QAM – 2 code words per symbol

• 64 QAM – 3 code words per symbol

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 50

MCS index Modulation Code Rate NBPSC NCBPS NDBPS Data Rate

13 SQPSK 1/2 1 336 168 693.00

14 SQPSK 5/8 1 336 210 866.25

15 QPSK 1/2 2 672 336 1386.00

16 QPSK 5/8 2 672 420 1732.50

17 QPSK 3/4 2 672 504 2079.00

18 16-QAM 1/2 4 1344 672 2772.00

19 16-QAM 5/8 4 1344 840 3465.00

20 16-QAM 3/4 4 1344 1008 4158.00

21 16-QAM 13/16 4 1344 1092 4504.50

22 64-QAM 5/8 6 2016 1260 5197.50

23 64-QAM 3/4 6 2016 1512 6237.00

24 64-QAM 13/16 6 2016 1638 6756.75

doc.: IEEE 802.11-10/0432r2

Submission

• SQPSK-Spread QPSK

• QPSK Modulation (DCM)

• DTP (Dynamic tone pairing)– Via feedback from the receiver to the transmitter

– Number of tone per group, index

• Pilots– Positions: 20 carriers spacing -150:20:150

– LFSR switched per symbol

OFDM Modulation

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 51

doc.: IEEE 802.11-10/0432r2

Submission

OFDM Performance-AWGN

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 52

-2 0 2 4 6 8 10 12 14 16 18 2010

-3

10-2

10-1

100

SNR (dB)

Pac

ket E

rror

Rat

e

mcs 13mcs 14mcs 15mcs 16mcs 17mcs 18mcs 19mcs 20mcs 21mcs 22mcs 23mcs 24

Simulation Conditions:

• Packet Length-8192 Bytes• AWGN upper diagram• 4ns EXP PDP lower diagram• Timing and Freq Sync• Ideal PA• 13.75ppm CF/Symbol Clock Offset • No Phase Noise

doc.: IEEE 802.11-10/0432r2

Submission

General RF parameters

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 53

doc.: IEEE 802.11-10/0432r2

Submission

RF General Parameters

• Transmit EVM for all PHYs

• Unified mask for all PHYs

• Tx RF Delay

• Operating Temperature range

• Center Frequency leakage

• Transmit Ramp up/down

• Center Frequency Tolerance– ±20 ppm

• Symbol Clock Tolerance– ±20ppm locked

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 54

-3 -2 -1 0 1 2 3

x 109

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Frequency (Hz)

Spe

ctru

m n

orm

aliz

ed f

or 0

dB a

t in

band

(dB

)

Using PA model given by 11ad docs

PA output backoff from P-Sat=8.8

PA output backoff from P-Sat=8.0PA output backoff from P-Sat=7.2

PA output backoff from P-Sat=6.5

PA output backoff from P-Sat=5.9

PA output backoff from P-Sat=5.2

PA output backoff from P-Sat=4.6

PA output backoff from P-Sat=4.1PA output backoff from P-Sat=3.6

PA output backoff from P-Sat=3.1

0 2 4 6 8 10 12 14 15-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

PA output backoff from P-sat (dB)

TX

EV

M (

dB)

TX EVM vs. PA backoff, MCS =9

doc.: IEEE 802.11-10/0432r2

Submission

Conclusions

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.

May 2010

Slide 55

doc.: IEEE 802.11-10/0432r2

Submission

Conclusions

• This complete proposal meets all the requirements of the TGad PAR and FRD:– Supports data transmission rates up to 7 Gbps

– Supplements and extends the 802.11 MAC and is backward compatible with the IEEE 802.11 standard

– Enables both the low power and the high performance devices, guaranteeing interoperability and communication at gigabit rates

– Supports beamforming, enabling robust communication

– Supports GCMP security and power management

– Supports coexistence with other 60GHz systems

– Supports fast session transfer among 2.4GHz, 5GHz and 60GHz

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 56

doc.: IEEE 802.11-10/0432r2

Submission

Strawpoll

• Do you support adopting the complete proposal in 802.11-10/433r1 as the first draft specification D0.1 of the TGad amendment?– Y:

– N:

– A:

May 2010

Carlos Cordeiro, Intel /Gal Basson, Wilocity/et. al.Slide 57