Current State of World Biodiversity: our impoverished future life support system

Post on 04-Jul-2015

181 views 0 download

description

Presentation given to Willunga Environment Centre on 09/10/2013 (Note: some of the fonts are wonky from translation)

Transcript of Current State of World Biodiversity: our impoverished future life support system

• Anthropocene biodiversity crisis

• global environmental degradation drivers

• deforested Australia• degraded Australia• feral Australia• ecosystem services –

what are we losing?• climate change

• > 4 million protists

• 16600 protozoa

• 75000-300000 helminth parasites

• 1.5 million fungi

• 320000 plants

• 4-6 million arthropods

• > 6500 amphibians

• ~ 10,000 reptiles

• > 30000 fishes

• 10000 birds

• > 5000 mammals

• climate change

Bra

dsh

aw e

t a

l. 2

00

9 F

ron

t Ec

ol E

nvi

ron

7:7

9-8

7

Bra

dsh

aw e

t a

l. 2

00

9 T

ren

ds

Eco

l Evo

l24

:54

1-5

48

Han

sen

et

al.

20

10

PN

AS

10

7:8

65

0-8

65

5

Loar

ieet

al.

20

09

Geo

ph

ysR

es L

ett

36

:L1

48

10

• 1,011,000 km2 lost 2000-2005 (3.1 %; 0.6 %/year)• highest in boreal biome (60 %)• humid tropics next (Brazil, Indonesia, Malaysia)• dry tropics next highest (Australia, Brazil, Argentina)• N.A. greatest proportional lost by continent• Nationally, Brazil, Canada, Indonesia, DR Congo

uHalpern et al. 2008 Science 319:948-952

Connell et al. (2008) Mar Ecol Prog Ser 360:60-72

Pelag

ic th

resh

er sha

rk

Sliv

ertip

sha

rk

Gre

y re

ef sha

rk

Tiger

sha

rk

Sna

ggleto

oth

shar

k

Sicklef

in h

ound

sha

rk

Tawny

nur

se sha

rk

Zebra

sha

rk

Sca

llope

d ha

mm

erhe

ad

Gre

ater

ham

mer

head

White

tip re

ef sha

rk

0.0

0.1

0.2

0.3

0.4

0.5Fished reefs

Unfished reefs

Shark species

Abundance (

shark

s h

r-1)

Field et al. 2009 Fish & Fisheries 10:323-328

99 % of ALL species that have ever existed...

EXTINCTspecies lifespan = 1-10 M years

Ordovician (490-443 MYA)

Devonian (417-354 MYA)

Permian (299-250 MYA)

Triassic (251-200 MYA)

Cretaceous (146-64 MYA)

Anthropoceneextinction rate 100-10000 background

Crutzen 2002 Nature 415:23; Bradshaw & Brook 2009 J Cosmol 2:221-229© T

ian

tian

Zhan

g, G

oo

d5

0x7

0.o

rg

• 21 % of all known mammals• 30 % of all known amphibians• 12 % of all known birds• 35 % of conifers & cycads• 17 % of sharks• 27 % of reef-building corals

threatened with extinction

IUCN RED LIST OF THREATENED SPECIES www.iucnredlist.org

City Development Index www.unchs.org

Ecological Footprint www.footprintnetwork.org

Environmental Performance Index epi.yale.edu

Environmental Sustainability Index sedac.ciesin.columbia.edu

Genuine Savings Index worldbank.org

Human Development Index hdr.undp.org

Living Planet Index www.panda.org

Well-Being Index www.well-beingindex.com

Environmental Impact Rank

Böhringer & Joachim 2007 Ecol Econ 63:1-8

• natural forest loss2005-1990 /ha

• natural habitat conversionhuman-modified landcover/total landcover

• marine captures1990-2005 fish, whales, seals/EEZ km

• fertiliser useNPK/ha arable land

• water pollutionbiochemical oxygen demand/total renewable water resources

• carbon emissionsforestry, land-use change, fossil fuels/km2

• biodiversity threatRed List threatened birds, mammals, amphibians/listed species

Bradshaw et al. 2010 PLoS One 5:e10440

Bradshaw et al. 2010 PLoS One 5:e10440

Bradshaw et al. 2010 PLoS One 5:e10440

POPULATION

WEALTH

GOVERNANCE

Bradshaw et al. 2010 PLoS One 5:e10440

Bradshaw et al. 2010 PLoS One 5:e10440

per capita prosperity

envir

onm

enta

l dam

ageENVIRONMENTAL

KUZNETS CURVE

Bradshaw et al. 2010 PLoS One 5:e10440

1 10 100

0

50

100

150

l inear

quadratic

intercept

per capita PPP-adjusted GNI

Pro

po

rtio

nal

en

vir

on

men

tal

imp

act

ran

k*

1 10 100

0

50

100

150

per capita PPP-adjusted GNI

Ab

so

lute

en

vir

on

men

tal

imp

act

ran

k*

- im

pac

t +

imp

act

- im

pac

t +

imp

act

poorer wealthier

poorer wealthier

A

B

Bradshaw et al. 2010 PLoS One 5:e10440

9

21.5

21.5

40

7

1

forest woodland open woodlandshrubland grassland unvegetated

pre-European(late 18th Century)settlement

Barson et al. 2000 Land Cover Changes in Australia

5

14

26

37

16

2

forest woodland open woodland

1980s…

Barson et al. 2000 Land Cover Changes in Australia

i.e., ~ 38 % loss in about 200 years

Barson et al. 2000 Land Cover Changes in Australia

Bradshaw 2012 J Plant Ecol 5:109-120

%re

main

ing

Aca

cia

Cal

litris

Cas

uarin

a

Euca

lyptu

s lo

w

Euca

lypt t

all

Mal

lee

other

shru

blands

rain

fore

sts

0

20

40

60

80

100

78 %

Bradshaw 2012 J Plant Ecol 5:109-120

• legacy of deforestation –some of world’s highest

• highest modern mammal extinction rate on Earth

• continued mammal declines due to altered fire regimes

• meso-predator release• Murray-Darling Basin a mess• rates of changing climate in

Southern Hemisphere• 2nd-highest GHG emitters per

capita on Earth

Bradshaw et al. 2013 Biol Conserv 161:71-90

intact biological communities and functioning species interactions provide humanity with a host of ‘services’ that support or improve our quality

• ~ 90 % of all wild plant species require animal pollinators for fruit & seed set

• ~ 35 % of all human crops require pollination by insects (> 50 % by Apis mellifera)

• domestic honey bees declined in USA by 59 % since 1947 & in Europe by 25 % since 1985

• bees (& other pollinators) require more than just crops to complete life cycle

• decline mostly from habitat loss, fragmentation & degradation

Potts et al. 2010 Trends Ecol Evol 25:345-353

Bradshaw et al. 2007 Glob Change Biol 13:2379-2395

1990-2000• ~100,000 people killed• 320 million people displaced• total reported damages > US$1151 billion

Carbon Farming Initiative (2011)• financial incentive to land managers & farmers to reduce GHG

emissions from BAU or sequester (store) C on land (offset scheme)

• Australian Carbon Credit Units (ACCU) = 1 t CO2-e = AU$23 (as of 01/07/12)

• ACCU rise 2.5 % yr-1 until 2014/2015; set by market thereafter

• emissions-avoidance: agricultural, introduced animal & legacy landfill emissions

• sequestration-offsets: sequestering C in plants as they grow, increasing soil organic matter, avoided vegetation loss, afforestation, reforestation, revegetation, rangeland restoration and native forest protection

• must be additional, no leakage, permanent (unholy trinity)

van Oosterzee et al. 2012 Conserv Lett 5:266

• largest potential GHG mitigation using ecology: enhancing woody biomass

•most landscape changes likely compatible with biodiversity maintenance/enhancement

•but potentially many negative biodiversity outcomes if not done based on sound ecological principles

•more research on synergies, economics of trade-offs

• future conservation planning needs to incorporate GHG abatement values

• future C pricing largest driver of optimal trade-offs

Bradshaw et al. 2013 Biol Conserv 161:71-90

!!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

! !

SaleSale

YambaYamba

WaggaWagga

PerthPerth

AliceAlice

SydneySydney

MoruyaMoruya

HobartHobart

DarwinDarwin

CedunaCeduna

CairnsCairns

BroomeBroome

BouliaBoulia

AlbanyAlbany

WoomeraWoomera

MilduraMildura

ForrestForrest

CanberraCanberra

BathurstBathurst

AmberleyAmberley

AdelaideAdelaide

MelbourneMelbourne

GeraldtonGeraldton

CarnarvonCarnarvon

TownsvilleTownsville

TibooburraTibooburra

Mt.GambierMt.Gambier

LauncestonLaunceston

KalgoorlieKalgoorlie

RockhamptonRockhampton

Halls.CreekHalls.Creek

CharlevilleCharleville

Port.HedlandPort.Hedland

!

!

1940 1950 1960 1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

1.0

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1950 1960 1970 1980 1990 2000 2010

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1950 1960 1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

1.0

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1900 1920 1940 1960 1980 2000

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1940 1950 1960 1970 1980 1990 2000 2010

-2-1

01

2

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1940 1950 1960 1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

1.0

1.5

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1950 1960 1970 1980 1990 2000 2010

-0.5

0.0

0.5

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1940 1950 1960 1970 1980 1990 2000 2010

-1.0

0.0

0.5

1.0

1.5

2.0

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1950 1960 1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

1.0

1.5

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

1920 1940 1960 1980 2000

-0.5

0.0

0.5

1.0

1.5

Year

Ye

arl

y m

ea

n m

ax d

aily t

em

p a

no

ma

ly

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

Text

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

2425

2627

28

29

30

31

32

33

© Moronail.net

© WWF

What now?1.forests – stop all

deforestation now2.carbon – tax3.ecosystem services –

valuing what we get for free

4.restoration – fix the damage

5.population – no, we’re not Europe, USA or China

© T

ian

tian

Zhan

g, G

oo

d5

0x7

0.o

rg

corey.bradshaw@adelaide.edu.au

www.adelaide.edu.au/directory/corey.bradshaw

ConservationBytes.com