CSCE 641: Forward kinematics and inverse kinematics Jinxiang Chai.

Post on 18-Dec-2015

272 views 17 download

Tags:

Transcript of CSCE 641: Forward kinematics and inverse kinematics Jinxiang Chai.

CSCE 641: Forward kinematics and inverse

kinematicsJinxiang Chai

Outline

Kinematics– Forward kinematics– Inverse kinematics

Kinematics

The study of movement without the consideration of the masses or forces that bring about the motion

Degrees of freedom (Dofs)

The set of independent displacements that specify an object’s pose

Degrees of freedom (Dofs)

The set of independent displacements that specify an object’s pose

• How many degrees of freedom when flying?

Degrees of freedom (Dofs)

The set of independent displacements that specify an object’s pose

• How many degrees of freedom when flying?

• So the kinematics of this airplane permit movement anywhere in three dimensions

• Six• x, y, and z positions• roll, pitch, and yaw

Degrees of Freedom

• How about this robot arm?

• Six again

• 2-base, 1-shoulder, 1-elbow, 2-wrist

Work Space vs. Configuration Space

• Work space– The space in which the object exists– Dimensionality

• R3 for most things, R2 for planar arms

• Configuration space– The space that defines the possible object

configurations– Degrees of Freedom

• The number of parameters that are necessary and sufficient to define position in configuration

Forward vs. Inverse Kinematics

• Forward Kinematics– Compute configuration (pose) given individual

DOF values

• Inverse Kinematics– Compute individual DOF values that result in

specified end effector position

Example: Two-link Structure

• Two links connected by rotational joints

BaseEnd Effector

θ2

θ1 X=(x,y)

l2l1

Example: Two-link Structure

• Animator specifies the joint angles: θ1θ2

• Computer finds the position of end-effector: x

BaseEnd Effector

θ2

θ1

x=f(θ1, θ2)

l2l1

(0,0)

X=(x,y)

Example: Two-link Structure

• Animator specifies the joint angles: θ1θ2

• Computer finds the position of end-effector: x

BaseEnd Effector

θ2

θ1

x = (l1cosθ1+l2cos(θ2+ θ2)

y = l1sinθ1+l2sin(θ2+ θ2))

(0,0)

θ2 l2l1

X=(x,y)

Forward kinematics

BaseEnd Effector

θ2

θ1

(0,0)

θ2 l2l1

• Create an animation by specifying the joint angle trajectories

θ1

θ2

X=(x,y)

Inverse kinematics

• What if an animator specifies position of end-effector?

Base

End Effector

θ2

θ1

(0,0)

θ2 l2l1

X=(x,y)

Inverse kinematics

• Animator specifies the position of end-effector: x

• Computer finds joint angles: θ1θ2

Base

End Effector

θ2

θ1

(0,0)

θ2 l2l1

(θ1, θ2)=f-1(x)

X=(x,y)

Inverse kinematics

• Animator specifies the position of end-effector: x

• Computer finds joint angles: θ1θ2

Base

End Effector

θ2

θ1

(0,0)

θ2 l2l1

X=(x,y)

Why Inverse Kinematics?

• Basic tools in character animation - key frame generation

- animation control - interactive manipulation

• Computer vision (vision based mocap)• Robotics• Bioinfomatics (Protein Inverse Kinematics)

Inverse kinematics

• Given end effector position, compute required joint angles

• In simple case, analytic solution exists– Use trig, geometry, and algebra to solve

Inverse kinematics

• Analytical solution only works for a fairly simple structure

• Iterative approach needed for a complex structure

Iterative approach

• Inverse kinematics can be formulated as an optimization problem

Iterative approaches

Find the joint angles θ that minimizes the distance between the character position and user specified position

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(Cx,Cy)

i

ii Cf 2)(minarg

Iterative approaches

Find the joint angles θ that minimizes the distance between the character position and user specified position

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

Iterative approach

Mathematically, we can formulate this as an optimization problem:

The above problem can be solved by many nonlinear optimization algorithms:

- Steepest descent

- Gauss-newton

- Levenberg-marquardt, etc

i

ii cf 2)(minarg

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

0

kkk 1

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

0

kkk 1

How can we decide the amount of update?

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

0

kkk 1

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

0

kkk 1

Known!

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

0

kkk 1

Taylor series expansion

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

2

)(minarg

ii

kkik

i cf

f

0

kkk 1

Taylor series expansion

rearrange

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

2

)(minarg

ii

kkik

i cf

f

0

kkk 1

Taylor series expansion

rearrange

Can you solve this optimization problem?

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

ii

kki cf

2)(minarg

2

)(minarg

ii

kkik

i cf

f

2

))((minarg

i

kii

kki fcf

0

kkk 1

Taylor series expansion

rearrange

This is a quadratic function of

Gauss-newton approach

• Optimizing an quadratic function is easy

• It has an optimal value when the gradient is zero

),...,(

),...,(

),...,(

...

...

1

122

11

2

1

2

2

2

2

1

2

1

2

1

1

1

NiN

N

Ni

N

N

MM

N

M

N

N

fc

fc

fc

fff

fff

fff

2

))((minarg

i

kii

kki fcf

Gauss-newton approach

• Optimizing an quadratic function is easy

• It has an optimal value when the gradient is zero

),...,(

),...,(

),...,(

...

...

1

122

11

2

1

2

2

2

2

1

2

1

2

1

1

1

NiN

N

Ni

N

N

MM

N

M

N

N

fc

fc

fc

fff

fff

fff

2

))((minarg

i

kii

kki fcf

bJ Δθ

Linear equation!

Gauss-newton approach

• Optimizing an quadratic function is easy

• It has an optimal value when the gradient is zero

),...,(

),...,(

),...,(

...

...

1

122

11

2

1

2

2

2

2

1

2

1

2

1

1

1

NiN

N

Ni

N

N

MM

N

M

N

N

fc

fc

fc

fff

fff

fff

2

))((minarg

i

kii

kki fcf

bJ Δθ

Gauss-newton approach

• Optimizing an quadratic function is easy

• It has an optimal value when the gradient is zero

),...,(

),...,(

),...,(

...

...

1

122

11

2

1

2

2

2

2

1

2

1

2

1

1

1

NiN

N

Ni

N

N

MM

N

M

N

N

fc

fc

fc

fff

fff

fff

2

))((minarg

i

kii

kki fcf

bJ Δθ

bJJJ TT 1)(

Jacobian matrix

• Jacobian is a M by N matrix that relates differential changes of θ to changes of C

• Jacobian maps the velocity in joint space to velocities in Cartesian space

• Jacobian depends on current state

N

MMM

N

N

fff

fff

fff

21

2

2

2

1

2

1

2

1

1

1

...

...

Dofs (N)

The

num

ber

of c

onst

rain

ts (

M)

Jacobian matrix

• Jacobian maps the velocity in joint angle space to velocities in Cartesian space

(x,y)

θ1

θ2

Jacobian matrix

• Jacobian maps the velocity in joint angle space to velocities in Cartesian space

(x,y)

θ1

θ2

A small change of θ1 and θ2 results in how much change of end-effector position (x,y)

Jacobian matrix

• Jacobian maps the velocity in joint angle space to velocities in Cartesian space

2

1

2

1

1

2

2

1

1

1

ff

ff

y

x

(x,y)

θ1

θ2

A small change of θ1 and θ2 results in how much change of end-effector position (x,y)

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

f1f2

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

)sin(sin

)cos(cos

212112

212111

llf

llf

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

N

MMM

N

N

fff

fff

fff

21

2

2

2

1

2

1

2

1

1

1

...

...

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

)cos()cos(cos

)sin()sin(sin

21221211

21221211

lll

lllJ

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

)cos()cos(cos

)sin()sin(sin

21221211

21221211

lll

lllJ

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

)cos()cos(cos

)sin()sin(sin

21221211

21221211

lll

lllJ

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

1

21211

1

1 ))cos(cos(

llf

Jacobian matrix: 2D-link structure

2221211

2121211

,))sin(sin())cos(cos(minarg

21

cllcll

)cos()cos(cos

)sin()sin(sin

21221211

21221211

lll

lllJ

Base

θ2

θ1

(0,0)

θ2 l2l1

C=(c1,c2)

2

21211

2

2 ))sin(sin(

llf

Gauss-newton approach

Step 1: initialize the joint angles with

Step 2: update the joint angles:

0

kkk 1

Step size: specified by the user

Another Example

• A 2D lamp character

1

2

3

),,( 0yx

3c

2c

1c

0c

A

48

Another Example

• A 2D lamp character3l

A2l

1l

0l

49

Another Example

• A 2D lamp character

1

2

3

3c

2c

1c

A

Given , , how to compute the global position of the point A?

),,,,,( 3210 yx

?

),,( 0yx0c

50

Composite 2D Transformation

• What’s local coordinate ?

1

2

3

3c

2c

1c

A

?

A

),,( 0yx0c

51

Composite 2D Transformation

• What’s local coordinate ?

1

2

3

3c

2c

1c

A

?

A

1

03

0

l

p

),,( 0yx0c

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp 52

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

03

0

l

p

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp

100

0cossin

0sincos

)( 33

33

3

R

53

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

00

l

p

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp

100

010

01

)0,(2

2

l

lT

54

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

00

l

p

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp

100

0cossin

0sincos

)( 22

22

2

R

55

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

00

l

p

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp

100

010

01

)0,(1

1

l

lT

56

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

00

l

p

03221100 )()0,()()0,()()0,()(),( pRlTRlTRlTRyxTp

100

0cossin

0sincos

)( 11

11

1

R

57

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

),,( 0yx0c

1

00

l

p

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

100

10

001

),0( 00 llT

58

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

?

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

1

00

l

p

100

cossin

sincos

)(),( 00

00

0 y

x

RyxT

59

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

60

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

61

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

62

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

63

Composite 2D Transformation

• What’s the current coordinate A ?

1

2

3

3c

2c

1c

A

03221100 )()0,()()0,()(),0()(),( pRlTRlTRlTRyxTp

),,( 0yx0c

64

More Complex Characters?

• A 2D lamp with 6 degrees of freedom

1

2

3

3c

2c

1c

0p

032211003210 )()0,()()0,()(),0()(),(),,,,,( pRlTRlTRlTRyxTyxf ),,( 0yx0c

base

Upper arm

lower arm

middle arm

If you do inverse kinematics with position of this point

What’s the size of Jacobian matrix?

More Complex Characters?

• A 2D lamp with 6 degrees of freedom

1

2

3

3c

2c

1c

0p

032211003210 )()0,()()0,()(),0()(),(),,,,,( pRlTRlTRlTRyxTyxf ),,( 0yx0c

base

Upper arm

lower arm

middle arm

If you do inverse kinematics with position of this point

What’s the size of Jacobian matrix?

2-by-6 matrix

Human Characters

xRRTRTRRRTRRRzyxTf )()()()()()()()()(),,( 332

321

21110

1000000 67

Inverse kinematics

• Analytical solution only works for a fairly simple structure

• Iterative approach needed for a complex structure

Inverse kinematics

• Is the solution unique?

• Is there always a good solution?

Ambiguity of IK

• Multiple solutions

Ambiguity of IK

• Infinite solutions

Failures of IK

• Solution may not exist

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

2

0

2)(minarg

iii cf

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

2

0

2)(minarg

iii cf

Satisfy the constraints Minimize the difference between the solution and a reference pose

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

– Naturalness g(θ) (particularly for human characters)

Inverse kinematics

• Generally ill-posed problem when the number of Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

– Naturalness g(θ) (particularly for human characters)

)()(minarg2

gcf

iii

Inverse kinematics

• Generally ill-posed problem when the Dofs is higher than the number of constraints

• Additional objective– Minimal Change from a reference pose θ0

– Naturalness g(θ) (particularly for human characters)

)()(minarg2

gcf

iii

Satisfy the constraints How natural is the solution pose?

Interactive Human Character Posing

• video