Cosmic Bubble Collisionweb.phys.ntu.edu.tw/stringmeeting/GRaB100/lectures... · Outline 1...

Post on 09-Aug-2020

0 views 0 download

Transcript of Cosmic Bubble Collisionweb.phys.ntu.edu.tw/stringmeeting/GRaB100/lectures... · Outline 1...

Cosmic Bubble CollisionObservable Signature of A Classical Transition

Wei Lin (Lewis)1 Matthew C. Johnson1,2

1Department of Physics and Astronomy, York UniversityToronto, On, M3J 1P3, Canada

2Perimeter Institute for Theoretical PhysicsWaterloo, Ontario N2J 2W9, Canada

GRaB100, 2015

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 1 / 40

Outline

1 Motivation

2 Inflation

3 Eternal Inflation

4 Classical Transition

5 Simulating Colliding Bubble Universes

6 CMB Signature

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 2 / 40

FRW Universe : ds2 = −dt2 + a2dx2

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 3 / 40

Cosmic Microwave Background

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 3 / 40

Horizon Problem

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 4 / 40

Inflation

Inflation

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 5 / 40

Old Inflation

V(φ)

φ

VA

VB

I II

VA

VB

[Guth(1981)]

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 6 / 40

New Inflation

VC

IIIV(φ)

φ

d2φdt2 + 3H dφ

dt + dVdφ = 0

[Linde(1982)]

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 7 / 40

Eternal Inflation

T=0 x

T=-∞

I

II

HA-1

γA = ΓH−4A < 1 BBNdecay rate 4-Hubble volume

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 8 / 40

Classical Transition

VA

VB

VC

I II III

A A’ B’ B C

V(φ)

φ

Inationary Plateau

VA

VCVB VB

V (φ) = A1Exp

[− φ2

2∆φ12

]± A2Exp

[−(φ− σ)2

2∆φ22

]+

1

2m2(φ− φ0)2

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 9 / 40

Previous Work

Numerically simulating colliding bubble universes in flat space weredone in [Amin et al.(2013a)Amin, Lim, and Yang,Amin et al.(2013b)Amin, Lim, and Yang,Easther et al.(2009)Easther, Giblin, Hui, and Lim]

Free Passage Approximation

In the absence of gravity −∂2t φ+ ∂2xφ = dVdφ

At the collision point ∂2t φ, ∂2xφ dV

Potential gradient is small far away from the wall dVdφ ∼ 0

δφkick = 2(φB − φA)

Bubble collision with gravity was done in [Johnson and Yang(2010),Johnson et al.(2012)Johnson, Peiris, and Lehner]

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 10 / 40

Simulating Colliding Bubble Universes

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 11 / 40

Towards Observable Signature

Bubble collision destroys the geometry of the universe

gij = a(τ)2(1 + 2R)γij (perturbed opened FRW)

Observables

BBM

D2 ∝ R′′(ξ0) Ωk(ξ0) ∝ a−2(ξ0)

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 12 / 40

Square Wave Approximation

Rφamp

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 13 / 40

Instanton Profile

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 14 / 40

Kinematics and Potential Factors

Kinematics

Lorentz factor : γ =∆x

R

Potential (φamp)

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 15 / 40

CMB Signature

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 16 / 40

CMB Signature

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 17 / 40

Trends in Kinematics and Potential Factors

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RHF

1

2

3

4

5

6

7

8

2R

∆φ1−σβ1−σ

2 R(ξ0 =0)

0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034 0.0036

φamp/Mp

6.5

7.0

7.5

8.0

8.5

2R

β1−∆φ1

2ξ R(ξ0 =0)

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 18 / 40

Conclusion

Observability of a classical transition model is studied

Ωk = 0.000± 0.005 with confusion limit ±10−5

Factors affect the perturbation: Shape of the potential andKinematics

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 19 / 40

Future Work

Multi-field potential

A more motivated theory e.g. String Theory

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 20 / 40

References

Alan H. Guth.Inflationary universe: A possible solution to the horizon and flatnessproblems.Phys. Rev. D 23, 347, Jan 1981.

A. D. Linde.A new inflationary universe scenario: A possible solution of thehorizon, flatness, homogeneity, isotropy and primordial monopoleproblems.Physics Letters B, 108 (6):389 – 393, 1982.

Mustafa A. Amin, Eugene A. Lim, and I-Sheng Yang.A Clash of Kinks: Phase shifts in colliding non-integrable solitons.2013a.

Mustafa A. Amin, Eugene A. Lim, and I-Sheng Yang.A scattering theory of ultra-relativistic solitons.2013b.

Richard Easther, Jr Giblin, John T., Lam Hui, and Eugene A. Lim.Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 20 / 40

A New Mechanism for Bubble Nucleation: Classical Transitions.Phys.Rev., D80:123519, 2009.doi: 10.1103/PhysRevD.80.123519.

Matthew C. Johnson and I-Sheng Yang.Escaping the crunch: Gravitational effects in classical transitions.Phys.Rev., D82:065023, 2010.doi: 10.1103/PhysRevD.82.065023.

Matthew C. Johnson, Hiranya V. Peiris, and Luis Lehner.Determining the outcome of cosmic bubble collisions in full GeneralRelativity.Phys.Rev., D85:083516, 2012.doi: 10.1103/PhysRevD.85.083516.

Wei Lin (Lewis), Matthew C. Johnson Cosmic Bubble Collision GRaB100, 2015 20 / 40