Connecting Acoustics to Linguistics in Chinese Intonation Greg Kochanski (Oxford Phonetics) Chilin...

Post on 17-Dec-2015

216 views 0 download

Transcript of Connecting Acoustics to Linguistics in Chinese Intonation Greg Kochanski (Oxford Phonetics) Chilin...

Connecting Acoustics to Linguistics in Chinese Intonation

Greg Kochanski (Oxford Phonetics)

Chilin Shih (University of Illinois)

Tan Lee (CUHK)

withHongyan Jing (IBM)

Jiahong Yuan (Cornell)

Questions• Can we usefully include biomechanics into a phonetics

model?• Can we objectively assign an importance to a syllable?

• Can we write a unified description of F0 for both tone and accent languages?

GoalBuild a mathematical model that

takes a sequence of discrete symbols as inputand

produces a quantitative prediction for f0.

TheChallenge

Existing work

Rising?

Basic assumptions used in modeling

• People plan their utterances several syllables in advance.

• People produce speech optimized to communicate with minimal effort.

• A realistic model for the muscles that control f0

Realistic model of muscle control for F0

• We’d like a model of prosody that can apply beyond F0.

People talk nearly as fast as possible.

Speech could be optimal

•Most of what we say is made from bits and pieces we’ve said before.

•There are only 4 (Mandarin) or 6 (Cantonese) tones to combine.

•A speaker has the chance to practice and optimize all the common 3- and 4- tone sequences.

Optimize what?

• People want to minimize effort and/or talk faster– Chairs, Cars

• People want to minimize the chance that they will be misunderstood.– Risk = P(misinterpreted) * cost(misinterpreted)

Minimize: Effort + cost*Error– We allow each syllable to have a different weight,

so error is a sum over syllables or words.– Perhaps cost matches importance.

Effort and Error

22222 pppdtG

How does Effort depend on the form of the pitch curve?

Error = mean-squared deviation between the f0

and the templates.

Model behavior

• For cost>>1, Error dominates, and pitch matches target.

• For cost<<1, Effort dominates, both speaker and listener accept large deviations, and pitch smoothly interpolates.

• For cost~1, everything compromises.

Cost plays the role of a prosodic strength.

Another Challenge

Time (10 ms intervals)

F0 (

Hz)

12

34

Tone shapes

The rest of the model.

• A model is a sequence of targets (used to compute the Error terms).

• Each target has a strength (i.e. the cost of misinterpretation).

• One target per tone.

• Targets are stretched to fit syllable duration.

• Only one phonological rule: 3323

Model fits for Mandarin Chinese

Tone class (input)Strength (result)

Inside a word, strength is distributed by the metrical

pattern

What’s the procedure?

Compute the pitch curve as a function of phonological inputs

and prosodic strength.

Sequence of tones (phonology)

Prosodic strengths

Predicted F0

Data

Nonlinear least-squares fitting algorithm

Model fits to Mandarin Chinese

0.61 free parameters per syllable, 13 Hz RMS error.

Strengths are stable under small changes in the model.

The two models have words defined by different labelers

This model allows extra freedom: different tones are allowed to define their targets differently

This model allows less freedom: all tones have the same type of target.

Model parameters

Mandarin

Cantonese

Phrasing is marked in speech.

Cantonese data courtesy of Prof. Tan Lee

Metrical patterns inside words

Mandarin

“Normal” segmentation of characters into words.

Random segmentation of characters into words.

Lexical acquisition

Other nice properties

•Strengths are correlated with duration:

•(duration is a proxy for prominence)

•r = 0.40 (sentence final)

•r = 0.27 (non-final)

•>95% confidence

•Strength is correlated with mutual information of neighboring syllables:

•r = -0.175

•>95% confidence

•Sloppy when generating unsurprising syllables, and precise for surprising syllables.

Local Conclusion

• Intonation can be represented as:– a small set of discrete symbols, in sequence, with– a per-person or per-style shape for each symbol;– modulated by a variable prosodic strength.

• One symbol per syllable seems enough

• The strength parameter seems real– Similar across languages– Matches language structure

Q: But does it work for English?

A: Yes, under circumstances where the intonational phonology is simple enough to be obvious.

Reminder: Limitations of f0 and complexity of prosody.

To show the range of information that can be carried by prosody, observe an elegant experiment by Stan Freberg (1950):

The text has virtually no lexical information, but it still tells a story. Even so, it is very hard to label individual words.

English

•Sentences in the form “123-456-7890?”

•Speaker is trying to confirm a single digit.

•Models have just 1.1 parameter per sentence.

The model for English

•There are identical boundary tones on every utterance.

•All target shapes are identical, except the focus.

%X B B B | B A B | B B B B Y%

%X B B B | A B B | B B B B Y%

%X B A B | B B B | B B B B Y%

•Rather simple phonology.

•Accent prominence depends on position in phrase and in utterance.

Model fits well over a range of speeds.Suppressed phrasing

Lowspeed

Highspeed

Merger of accent with boundary tone

Model reproduces nontrivial features of the data and fits well over a range of speeds.

Suppressed phrasing

Lowspeed

Highspeed

Merger of accent with boundary tone

Conclusion

•Physiologically-based models can capture important aspects of speech.

•A very compact representation of behavior.

•It can be applied broadly:

•Two dialects of Chinese

•Some aspects of English

•It raises questions about where the phonetics/phonology boundary actually sits.

•Introduces an objective acoustic measure of prosodic prominence.

•Suggests that the speaker may help the listener segment the speech stream.