Conferencia José Manuel Torralba

Post on 17-Nov-2014

756 views 1 download

Tags:

description

Instituto IMDEA Materiales de la Comunidad de Madrid: una experiencia basada en el liderazgo y la atención de talento.

Transcript of Conferencia José Manuel Torralba

Instituto IMDEA Materiales de la Comunidad de Madrid: una

experiencia innovadora basada en el liderazgo y la atracción de talento

José Manuel TorralbaInstituto IMDEA Materiales, Universidad Carlos III de Madrid

IMPOSSIBLE IS NOTHING

2

198719962008

4

5

> 1.000 k€> 10 PhD thesis> 80 papers JCR

1987-1995

6

> 5.000 k€> 20 PhD tesis> 250 papers JCRHöganäs ChairCentro de excelencia

Proyectos competitivos nacionales

50%

Proyectos CAM8%

NSF3%

Proyectos UE 18%

Empresas21%

2003-2012

IMDEA es una red de organizaciones independientes de investigación, sin animo de lucro, promovidas por el gobierno de la Comunidad de Madrid

MISSION

MISION

- Realizar investigación de excelencia

- Promover la transferencia de tecnología a la industria y mejorar la competitividad

- Atraer talento a la Comunidad de Madrid

Investigación de excelencia

- Publicar en las mejores revistas (non multa sed multum)- Definir progamas de investigación y capacidades - Visibilidad internacional - Referencia en la dirección y tutorización- Liderazgo

Transferencia de tecnología

- Colaboración estratégica con empresas (nacionales y multinacionales)- La colaboración con la industria se basa en proyectos de investigación (que

permita publicar o patentar), no en desarrollo de ingeniería o ensayos. - Las patentes siempre pensando en licenciarlas. - Transferencia de talento a la industria.

Atracción de talento- Crear un ambiente que facilite atraer talento de forma individual de cualquier lugar

del mundo - Jovenes investigadores que quieran formar su grupo de investigación

independiente y con potencial para conseguir una ERC StG- En qué areas queremos ser una referencia internacional?

MISSION

Algunos comentarios- Para que una mesa de tres patas se mantenga estable y plana, las tres

patas tienen que tener la misma longitud. - Para hacer investigación de excelencia, hay que atraer talento. - El gobierno y la sociedad (los políticos) son muy sensibles a la

transferencia de tecnología. - Necesitamos socios industriales para cubrir el presupuesto

(especialmente en la actual situación económica) - Colaboración en equipo vs. metas individuales

La iniciativa IMDEA ha promovido siete institutos independientes en distintas áreas (agua, alimentación, energía, materiales, nanociencia, redes y software).

ORGANIZACION DEL INSTITUTO

PATRONATO

COMITÉ TECNICODirector, Director Adjunto, Gerente,

Director técnico, Groupleaders

CONSEJO DIRECCIONDirector, Director Adjunto, Gerente

COMISION PERMANENTE

COMITE CIENTIFICO

COMITE DE GESTIONGerente, Director Técnico,

Direccion personal

CONSEJO INSTITUTODirector, Director Adjunto, Gerente, Groupleaders, representantes PhD

2 semanas

Mes. 2 semanas

3 meses

El instituto IMDEA Materiales está gobernado por un patronato que incluye (4) representantes de la Comunidad de Madrid, (4) instituciones de investigación (UPM, UCM, UC3M, CSIC), (5) científicos de prestigio internacional y la industria (ITP, Airbus, Gamesa, Alciturri, Antolín)

18

Prof. Dr. John E. AllisonUniv. of Michigan. USA

Prof. Dr. Brian CantorUniversity of Bradford. UK

Prof. Dr. Bill Clyne Cambridge University. UK

Prof. Dr. Bill A. CurtinEcole Federale Polytechnique of Lausanne (EPFL). Switzerland

Prof. Dr. Manuel Elices ProfessorUniversidad Politécnica de Madrid. Spain

Prof. Dr. Peter GumbschDirector Fraunhofer Institute for Mechanics of Materials (IWM)University of Karlsruhe. Germany

Prof. Dr. Yiu-Wing MaiDirector Centre for Advanced Materials Technology (CAMT)University of Sydney. Australia

Prof. Dr. Andreas MortensenDirector Institute of MaterialsEcole Federale Polytechnique of Lausanne (EPFL). Switzerland

Dr. Pedro Muñoz-EsquerIndependent Consultant

Prof. Dr. Eugenio OñateDirector CIMNEUniversidad Politécnica de Cataluña. Spain 

Prof. Dr. Dierk RaabeDirector Max-Planck Institute for Iron Research (MPIE)RWTH Aachen University. Germany

Dr. Gary Savage Independent Consultant

Prof. Dr. John R. WillisCambridge University. UK

Prof. Dr. Randall M. GermanAssociate Dean of EngineeringSan Diego State University. USA

Prof. Dr. Rodolfo MirandaDirector IMDEA Nanoscience Institute Universidad Autónoma de Madrid. Spain 

RESEARCH LINESRESEARCH LINES

Tratamos de combinar investigación aplicada (de acuerdo con los intereses a medio plazo de los socios industriales) con investigación fundamental (topicos en la frontrera del conocimiento que nos propicie liderazgo tecnológico a largo plazo).

PERSONNEL

Llamadas internacionales (2007, 2008 & 2010) para reclutar investigadores de plantilla

- Más de 300 solicitudes de 35 países

- Evaluación preliminar del Comité Científico (≈ 10%)

- Selección final después de entrevista

En la actualidad:- 68 investigadores de 15 países: 7 senior, 8 junior, 3 visitantes, 13

postdoctorales, 37 doctorandos.

- 50% de los investigadores extranjeros

- 70% de los doctores hicieron el doctorado fuera de España:España: UPM (4), UPC, UPV, UCM (4), Univ. de Valladolid, Univ. de Zaragoza, …

Europa: Cambridge (2), Max Planck for Iron Research, Delft University of Technology, University of Leoben, Dublin City University, Grenoble INP, …

America: MIT, UC Berkeley, Dayton University, State Univ. Campinas, …

Asia: India Institute of Technology, NIMS Japan, China Central South University, Sichuan University, Beijing University of Chemical Technology, Seoul National University, …

RESEARCH GROUPSPhysical Metallurgy

Dr. M. T. Perez-Prado

Physical SimulationDr. I. Sabirov

Computational Alloy Design

Dr. Y. W. Cui

Solid State ProcessingProf. J.M. Torralba

Structural Composites Dr. C. Gonzalez

Design & Simulation Composite Structures

Dr. C. S. Lopes

Multifunctional Nanocomposites

Dr. J. J. Vilatela

Nano-Architectures & Materials Design

Dr. R. Guzmán de Villoria

Multiscale Materials Modeling

Dr. J. Segurado

Mechanics of MaterialsProf. J. LLorca

Theoretical & AppliedMechanics

Prof. P. Ponte-Castañeda

AtomisticMaterials ModelingDr. I. Martín-Bragado

Nanomechanics & Micromechanics

Dr. J. M. Molina

METALES

COMPUESTOS

MO

DEL

IZA

CIÓ

N &

C

AR

AC

TER

IZA

CIO

N

Solidification Processing & EngineeringDr. S. Milenkovic

Polymer Nanocomposites

Dr. D. Y. Wang

RESEARCH PROGRAMS Next generation of Composites

- Low-cost processing of high performance composites (out-of-autoclave, hot-forming, in-situ consolidation of thermoplastics)

- New frontiers of structural performance (high temperature, impact, self-healing, non-conventional lay-up configuration)

- Composites with multifunctional capabilities (fire resistance, electrical and thermal conductivity)

Novel Alloy Design, Processing & Development- Metallic alloys for high temperature

structural applications (Ni/Co, TiAl, NiAl, etc.)

- Light alloys and their composites- Casting, solidification & welding- Optimization of properties by means

of thermo-mechanical treatments

Integrated Computational Materials Engineering- Virtual design, virtual processing

and virtual testing- Multiscale materials modelling

(molecular mechanics, kinetic MonteCarlo, computational thermodynamics, phase-field, finite element, homogenization, etc.)

Nanomaterials & Nanomechanics-Graphene and 2D materials, nanotubes and nanofibers-Nanomaterials for energy generation and storage-Nanomechanics-In situ characterization of materials at the nm and µm scale

SINGULAR RESEARCH INFRASTRUCTURES

Carbon Nanotube Fibre Spinning Reactor CVD Reactor to manufacture graphene, 2D materials & nanotubes Processing of structural composites (pultrusion, RTM, infiltration, hot-press) Injection processing of polymer and polymer nanocomposites Directional solidification and casting Thermo-mechanical processing of metallic alloys (Gleeble 3800)

X-ray computer-assisted tomography scanner Dual-beam FIB FEGSEM with EBSD In situ mechanical testing (SEM, AFM, XCT) at high temperature (700ºC)

Fire testing (cone calorimeter, UL94, LOI)

Nanoindentors (up to 750ºC)

High performance computer cluster (232 processors)

RESULTS (2012)

Publications, conferences and patents- 65 articles in SCI Journals: Acta Mater (4), J Mech Phys Solids, Phys Rev Let, Int J Plasticity (2), Carbon (2), Langmuir, Chem Sus Chem, Composites Sci Techno (4), Scripta Mater (2), Metall Mater Trans A (3), etc.

- Organization of 6 international symposia

- 23 plenary/keynote lectures at international Conferences

- 20 invited seminars at universities and research centers (Los Alamos National Laboratory, Beijing University of Science and Technology, Oxford University, Cambridge University, Ecole Polytechnique Federale de Lausanne, Osaka University, Arizona State University,

- 2 patent submissions, 2 software packages licensed

- 2 PhD theses and 7 MEng theses. 33 PhD theses on going.

Current research projects: 38- 1 regional, 3 national, 15 european, 6 international and 13 industrial

PROYECTOS INVESTIGACION ACTIVOS Structural composites and nanocomposites:

- IMS&CPS (Electrical prop. & fire resistance nanocomposites, EU 7th FP, NMP)

- Fire retardant polymer nanocomposites (Tolsa)

- Development of shields against high velocity impact on A30X fuselage, Airbus)

- SELF HEALING (Self-healing polymer-matrix composites, Acciona)

- Semi-cured processing of structural composites (Airbus)

- NFRP (Nano-Engineered Fiber-Reinforced Polymers, EU 7th FP, People)

- MUFIN (New multifunctional fiber for new multifunctional composites, EU 7th FP)

- MUDATCOM (Damage-tolerant, multifunctional structural composites, MEC)

Integrated Computational Materials Engineering: - MICROMECH (microstructure-based modelling of IN718, EU 7th FP, JTI)

- SIMCREEN (Simulation for screening properties of composites, Airbus)

- VMD (Virtual Materials Design platform, Abengoa Research)

- MODENA (Mutiscale modeling of PU foams, EU 7th FP, NMP)

- ICMEg (Integrated Computational Materials Engineering Network, EU 7th, NMP)

Nanomechanics: - RADINTERFACE (Nanoscale metallic multilayers, EU 7th FP, NMP)

- NANOLAM (Metal-ceramic multilayers, USA-Spain Materials World Network)- HOTNANOMECH (Nanomechanics of strong solids at high temperature, MEC)

Advanced metallic materials: - MAGMAN (Mg-RE alloys, USA-Spain Materials World Network)

- TiAlES (Processing & simulation of TiAl, ITP)

- VANCAST (Casting of superalloy NGV, ERA-Net Matera+, EU 7th FP)

- LIMEDU (Nanostructured Al and Ti by SPD, ERA-Net Matera+, EU 7th FP)

- NEWQP (Advanced high strength steels by QP process, EU, RFCS)

- VINAT (Ti-based nanomaterials, EU 7th FP, NMP)

- EXOMET (Novel liquid processing routes of light alloys, EU 7th FP, NMP)

- NECTAR (Advanced NiAl-based Eutetic Alloys, EU 7th FP, People)

- PILOTMANU (Advanced manufacturing metals & cemets, EU, 7th FP, SME)

PROYECTOS INVESTIGACION ACTIVOS

Materials for electronics: - MasID (Modeling of advanced semiconductor integrated device, Global

Foundries Pte. Ltd., Singapore)

- MASTIC (MonteCarlo simulation of technological crystals, EU, 7th FP, People)

- COMPOSE3 (Compound Semiconductors for 3D integration, EU, 7th FP, ICT)

Materials for energy: - CARINHYPH (Nanocarbon-inorganic hybrids for photocatalysis, EU 7th FP,

NMP)

PROYECTOS INVESTIGACION ACTIVOS

PM steelsIron Base CermetsPowder injection mouldingPM Titanium AlloysAluminium and magnesium matrix compositesIntermetallicsCoatingsSpray pyrolysis

28

Ti

Design of new low-cost Ti alloys

Development of full dense PM Ti alloys

•Modification of composition: sustitution of V for Fe•Conventional PM techniques : pressing and sintering

•Consolidation for:•Pressing & SinteringHIP, Hot Pressing •Heat treatments

•Ti-6Al-4V•Ti-3Al-2.5V•Ti-6Al-7Nb

PM Ti alloys

29

Ti

Design of new low-cost Ti alloys

Ti(HDH) +

1, 3, 5 7 wt% Fe ASC

1, 3, 5, 7 wt% Fe Carbonyl

Fe-25TiMaster Alloy

a+b

aprimary

Ti-7Fe (carbonyl) alloy sintered at 1300ºC-1h-5ºC/min.

PM Ti alloys

30

Comparison among materials

UTS comparable to wrought Ti-6Al-4V

Ingot MetallurgyPowder Metallurgy

PM Ti alloys

31

Prealloyed powderTi-6Al-4VHDH

Elemental Ti HDH

Elemental Al Al:V (35:65)

HEM

Al:V (60:40)

Ti64 PA

Ti64 MA

CB

CB: Conventional blendingHEM: High Energy Milling

Master Alloy+

Ti

Development of full dense PM Ti alloys

PM Ti alloys

32

Properties of Ti6Al4V alloy obtained from prealloyed powders (PA) and master alloys (MA), sintered at different temperatures.

Comparison to wrought Ti (*)

(*) Guide to Engineered Materials (GEM 2002), Advanced Materials and Processes, Vol. 159, Issue 12, p29-184 December 2001

UTS [MPa]

Ti (grade 4) 550 - 662

Ti-6Al-4V (annealed) 900 - 993

Ti6Al4V alloy from MA powders, sintered at 1250ºC-2h.

PM Ti alloys

33

Ti base alloys by PM

Design of alloys

“net-shape” or “near-net shape” technologiesColoidal

processing Ti-6Al-7Nb: 1350°C – 2h

Homogeneous microstructureCompetitive properties (UTS > 900 MPa)

Agomerates of particles and sintered material

PM steelsIron Base CermetsPowder injection mouldingPM Titanium AlloysAluminium and magnesium matrix compositesIntermetallicsCoatingsSpray pyrolysis

Outline

35

Preform by uniaxial pressing or CIP

Powder developed by mechanical alloying

SECUENCIA DE FABRICACIÓN

Hot extrusion without canning and degassing

Al matrix composites

36

20 m

Al matrix composites

37

The side views of the specimens compressed at (a) different temperatures and strain rates to a strain of about 0.8, (b) 200 °C and 0.01 s-1 to the strains of about 1.2 and 1.6.

38

The processing maps of AZ91 alloy developed at the strain of 0.1 (up) and 0.5 (down)

39

PM steelsIron Base CermetsPowder injection mouldingPM Titanium AlloysAluminium and magnesium matrix compositesIntermetallicsCoatingsSpray pyrolysis

Outline

40

Ti4522XD, Ti-45Al-2Nb-2Mn-0.8(%v.) TiB2

II. PM – Prealloyed PowderI. Centrifugal casting (CC):

I.1. CC-blades: I.2. CC- samples: II.1. PM - HIP

+ Heat Treatments

II.2. PM – FAHPField assisted hot pressing

R. Gerling et al: Adv. Eng. Mat, 2004, vol. 6, N. 1-2Access e. V. TechCenter

Intermetallics

41

Ti4522XD, Ti-45Al-2Nb-2Mn-0.8(%v.) TiB2

II. PM – Prealloyed Powder

R. Gerling et al: Adv. Eng. Mat, 2004, vol. 6, N. 1-2

Electrode Induction Melting Gas Atomization (EIGA)

Intermetallics

42

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

Inte

nsity

(cou

nts)

Angle (؛)

II.1. PM – Hot Isostatic Pressing (HIP)

Experimental procedure: Material and Processing

Ti4522XD, Ti-45Al-2Nb-2Mn-0.8(%v.) TiB2

g, a2

a2gg

a2ggg

Heating rate: <10°C/minDwell temperature: 1185°C ±10Dwell pressure: 1720bar ±50Dwell time: 240min ±15Cooling rate: <10°C/minAtmosphere: Argon

HIP conditions:

Intermetallics

43

Ti4522XD, Ti-45Al-2Nb-2Mn-0.8(%v.) TiB2

II.2. PM – FAHP (Field assisted hot pressing)

Nearly lamellar microstructure

44

TiAl

Al2O3

Verde Sinterizado

High energy millingCompaction

CIP

SinteringLP

ReactiveVacuum

TiAl + Al2O3 (+ Al Ti2C)• Near full density• Low porosity (avoiding HIP)• 30% - 40% volumen • ‘In situ’ formation of the reinforcement

Mecanizado

TiAl base composites

COATINGS AND SURFACE MODIFICATION

Sol-gel coatings

Surface activity

Electrochemistry activityOxidationBiocompability

Porous coatings

Termochemical coatings

Titanium, 316L stainless steel

Ca10(PO4)6(OH)2

46

“as prepared” particles Primary particles

MET - 500 ºC

50 nm

Primary particles: < 30 nm

LiFePO4 system

Spray pyrolysis

48

¡¡¡GRACIAS P R SU ATENCION!!!

¿Preguntas?