Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich),...

Post on 23-Dec-2015

216 views 1 download

Transcript of Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich),...

Computational Entropy

Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich),

Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington U.), and Colin Jia Zheng (Harvard)

Salil VadhanHarvard University

(on sabbatical at MSR-SVC and Stanford)

How I came to work onPseudorandomness

Fall 93: CS226r “Efficient Algorithms,” Prof. M. Rabin– “The R word plays a role”– I am amazed by the power of randomness.

Spring 95: S. Rudich tells me about evidence that P=BPP.– I am skeptical.

1996-1999: I learn about pseudorandom generators & derandomization.– I need to work on this too!

One-Way Functions [DH76]

Candidate: f(x,y) = x¢y

Formally, a OWF is f : {0,1}n ! {0,1}n s.t.

f poly-time computable

8 poly-time A

Pr[A(f(X))2 f-1(f(X))] = 1/n!(1) for XÃ{0,1}n

x f(x)

easy

hard

OWFs & Cryptography

one-way functions

pseudorandomgenerators

target-collision-resistanthash functions (UOWHFs)

statistically hidingcommitments

pseudorandomfunctions

statistically bindingcommitments

zero-knowledgeproofs

statistical ZKarguments

private-keyencryption

MACsdigital

signatures

secure protocols & applications

[HILL90][R90]

[HNORV07]

[GGM86] [N89]

[GMW86]

[NY89] [BCC86]

OWFs & Cryptography

one-way functions

pseudorandomgenerators

target-collision-resistanthash functions (UOWHFs)

statistically hidingcommitments

pseudorandomfunctions

statistically bindingcommitments

zero-knowledgeproofs

statistical ZKarguments

private-keyencryption

MACsdigital

signatures

secure protocols & applications

[HILL90][R90]

[HNORV07]

[GGM86] [N89]

[GMW86]

[NY89] [BCC86]

Computational Entropy[Y82,HILL90,BSW03]

Question: How can we use the “raw hardness” of a OWF to build useful crypto primitives?

Answer (today’s talk):

Every crypto primitive amounts to some form of “computational entropy”.

One-way functions already have a little bit of “computational entropy”.

Entropy

Def: The Shannon entropy of r.v. X is

H(X) = ExÃX[log(1/Pr[X=x)]

H(X) = “Bits of randomness in X (on avg)”

0 · H(X) · log |Supp(X)|

Conditional Entropy: H(X|Y) = EyÃY[H(X|

Y=y)]

H(X ) = Exà X [log(1=Pr[X = x])]HHH(X ) =

X concentratedon single point

X uniform onSupp(X)

Worst-Case Entropy Measures

Min-Entropy: H1(X) = minx log(1/Pr[X=x])

Max-Entropy: H0(X) = log |Supp(X)|

H1(X) · H(X) · H0(X)

Computational Entropy

A poly-time algorithm may “perceive” the entropy of X to be very different from H(X).

Example: a pseudorandom generator G: {0,1}m!{0,1}n

– G(Um) is computationally indistinguishable from Un

– But H(G(Um))·m.

Pseudoentropy

Def [HILL90]: X has pseudoentropy ¸ k iff there exists a random variable Y s.t.1. Y ´c X2. H(Y) ¸ k

Interesting when k > H(X), i.e.

Pseudoentropy > Real Entropy

OWFs & Cryptography

one-way functions

pseudorandomgenerators

target-collision-resistanthash functions (UOWHFs)

statistically hidingcommitments

pseudorandomfunctions

statistically bindingcommitments

zero-knowledgeproofs

statistical ZKarguments

private-keyencryption

MACsdigital

signatures

secure protocols & applications

[HILL90] [R90][HNORV07]

[GGM86] [N89]

[GMW86]

[NY89] [BCC86]

pseudoentropy

Application of Pseudoentropy

Thm [HILL90]: 9 OWF ) 9 PRG

Proof idea:

OWF

X with pseudo-min-entropy ¸ H0(X)+poly(n)

X with pseudoentropy ¸ H(X)+1/poly(n)

PRG

to discuss

repetitions

hashing

Pseudoentropy from OWF

Intuition: for a 1-1 OWF f and XÃ{0,1}n

– H(X|f(X))=0, but– 8 poly-time A Pr[A(f(X))=X] = 1/n!(1) = 1/2!(log n)

) X has “unpredictability entropy” !(log n) given f(X) [HLR07]

Challenges:– How to turn “unpredictability” into

“pseudoentropy”?– When f not 1-1, unpredictability can be trivial.

Pseudoentropy from OWF

Thm [HILL90]: W=(f(X),H,H(X)1,…H(X)J)has pseudoentropy ¸ H(W)+!(log n)/n, where H : {0,1}n ! {0,1}n is a certain kind of hash function, XÃ{0,1}n, JÃ{1,…,n}.

Thm [HRV10,VZ11]: (f(X),X1,…,Xn) has “next-bit pseudoentropy” ¸n+!(log n).– No hashing!– Total amount of pseudoentropy known & > n.– Get full !(log n) bits of pseudoentropy.

Next-bit Pseudoentropy

Thm [HRV10,VZ11]: (f(X),X1,…,Xn) has “next-bit pseudoentropy” ¸ n+!(log n).

Note: (f(X),X) easily distinguishable from every random variable of entropy > n.

Next-bit pseudoentropy: 9 (Y1,…,Yn) s.t.– (f(X),X1,…,Xi) ´c (f(X),X1,…,Xi-1,Yi)

– H(f(X))+i H(Yi|f(X),X1,…,Xi-1) = n+!(log n).

Consequences

Simpler and more efficient construction of pseudorandom generators from one-way functions.

[HILL90,H06]: OWF f of input length n ) PRG G of seed length O(n8).

[HRV10,VZ11]: OWF f of input length n ) PRG G of seed length O(n3).

Unpredictability)Pseudoentropy[previous work]

Assume: Z has unpredictability entropy ¸ k given Y (i.e. 8 poly-time A Pr[A(Y)=Z]·2-k). [Y82]: If k¼|Z|, then (Y,Z) ´c (Y,Uk)

[GL89,HLR07]: (Y,H,H(Z)) ´c (Y,H,Uk-!(log n))

[I95,H05]: If |Z|=1, then 9 Z’ of “average min-entropy [DORS04]” k given X s.t. (X,Z) ´c (X,Z’)

Coping with info-theoretic unpredictability of X given f(X)?

[HILL90] Use Leftover Hash Lemma to analyze prefix of (f(X),H,H(X)1,…H(X)J).

Pseudoentropy , Hardness of Sampling

Thm [VZ11]: Let (Y,Z) 2 {0,1}n £ {0,1}O(log

n).

Z has pseudoentropy ¸ H(Z|Y)+k given Ym

There is no probabilistic poly-time A s.t.D((Y,Z)||(Y,A(Y)) · k.

[D = Kullback-Liebler Divergence]

Proof: variant of proofs of Impagliazzo’s Hardcore Lemma [I95,N95,H05,BHK09].

Pseudoentropy , Hardness of Sampling

Thm [VZ11]: Let (Y,Z) 2 {0,1}n £ {0,1}O(log

n).

Z has pseudoentropy ¸ H(Z|Y)+k given Ym

There is no probabilistic poly-time A s.t.D((Y,Z)||(Y,A(Y)) · k.

Cor [HRV10,VZ11]: (f(X),X1,…,Xn) has next-bit pseudoentropy n+!(log n).

OWFs & Cryptography

one-way functions

pseudorandomgenerators

target-collision-resistanthash functions (UOWHFs)

statistically hidingcommitments

pseudorandomfunctions

statistically bindingcommitments

zero-knowledgeproofs

statistical ZKarguments

private-keyencryption

MACsdigital

signatures

secure protocols & applications

[HRV10,VZ11]

[R90][HNORV07]

[GGM86] [N89]

[GMW86]

[NY89] [BCC86]

next-bitpseudoentropy

OWFs & Cryptography

one-way functions

pseudorandomgenerators

target-collision-resistanthash functions (UOWHFs)

statistically hidingcommitments

pseudorandomfunctions

statistically bindingcommitments

zero-knowledgeproofs

statistical ZKarguments

private-keyencryption

MACsdigital

signatures

secure protocols & applications

[HRV10,VZ11]

[GGM86] [N89]

[GMW86]

[NY89] [BCC86]

next-bitpseudoentropy inaccessible entropy [HRVW09,

HHRVW10]

Inaccessible Entropy [HRVW09,HHRVW10]

Example: if h : {0,1}n! {0,1}n-k is collision-resistant and XÃ {0,1}n, then– H(X|h(X)) ¸ k, but– To an efficient algorithm, once it produces

h(X), X is determined ) “accessible entropy” 0.– Accessible entropy ¿ Real Entropy!

Thm [HRVW09]: f a OWF ) (f(X)1,…,f(X)n,X) has accessible entropy n-!(log n).– Cf. (f(X),X1,…,Xn) has pseudoentropy n+!(log

n).

Conclusion

Complexity-based cryptography is possible because of gaps between real & computational entropy.

“Secrecy”pseudoentropy > real entropy

“Unforgeability”accessible entropy < real entropy

Research Directions

Formally unify inaccessible entropy and pseudoentropy.

OWF f : {0,1}n! {0,1}n ) Pseudorandom generators of seed length O(n)?

More applications of inaccessible entropy in crypto or complexity.