Composite Structures – The First 100 Yearsae469/Composites 100 years.pdf · Composite Structures...

Post on 21-Mar-2018

239 views 2 download

Transcript of Composite Structures – The First 100 Yearsae469/Composites 100 years.pdf · Composite Structures...

Composite Structures – The First 100 Years

Billy Roeseler, Branko Sarh, and Max KismartonOriginally prepared for ICCM-16 Kyoto, Japan

9 July 2007

Added content from John Quinlivan, Joe Sutter, Damon Roberts, (Insensys,) GE, and Boeing 787 Program for Composite Design

Tutorial, Stanford University 28 Sept 2009

Two or more materials combined to perform some useful purposeExhibits the best properties of the individual materials plus additional qualities that the individual materials do not exhibit aloneExamples

Mud and straw Steel-reinforced concreteFibers embedded in a plastic resin matrixOriented Strand Board (OSB)

Composites Then and Now

1943 Popular Mechanics Prediction

Composites Provide Higher Strength and Stiffness

0 200 400 600 800 1000 1200 1400

Specific Modulus, E1/ rho (MSI / pci)

Specific Ultimate Tension,

UTS1 (KSI / pci) M60J

M55J

Vectran M

Vectran HS

Zylon ASDyneema T-1000

Zylon

M5

M50JM46J

M40JM35J

M30J

M30ST-800

Boron

M30

T-700G

AS4 T-400H

T300

AS4DSpectra 900

Kevlar 149

Kevlar 49Kevlar 29S-glass

E-glassQuartz

T-300G

AluminumTitanium

Steel

SpecificFiber Properties Dry

(no resin) Tension ONLY HM

Fig 2

Fiberglass Primary Structures -Rotor Blades (1964 flight test)

MASS Governor Volpe inspects Autocopter 1966

767 and Entry Door Spring 1978

Fiberglass Primary Structure in Service 1984

Joe Sutter 1982

1982 Prediction

Joe Sutter

707 DC-9

767

737-300DC-10

L1011

MD-11747-400

7E7

A380

OV-22

A400M

A330-200F/A-18 E/F

F-22F-35

ATR72

ATR42

1940 1960 1980 2000 2020

60

50

40

30

20

10

0

Boeing

Non-Boeing

757

B-2

Gripen

A310

LCA

Eurofighter

AV-8B

Perc

ent o

f Com

posit

e

AH-66

777A320A340

Rational Growth of Aerospace Usage of Composite Structures

Allowable Damage Limit

(ADL)

Increasing Damage Severity

Ultimate

~ Maximum load per lifetime

Design Load Level

Continued safe flight

Limit

Critical Damage Threshold (CDT)

1.5 Factor of Safety

Damage Tolerant Design

Nor

mal

ized

Gro

ss F

ailu

re S

tres

s (K

si)

5 10 15 20 25 30 20 30 40 50 60

XXX

X

XX XX

XX

End load Nx (Kip/in.) Shear Stiffness Ratio Gt/Nx

20

30

40

50

60

70

10

11-511-5

1B-11J-3

3B-3

27%Mass Reduction

8%

3J-13I-1

3B-3

3B-33J-13I-1

LCPAS 1982 (2220-3)Rhodes and Williams 1981 (5208)Aluminum (7150)Impact damage ½ in. –diameter metal impactor

X

LCPAS Compression Panel Test Summary

Component

TheoreticalMass

Reduction (%)

Upper SurfaceLower SurfaceSparsTotal(Panels + Spars)

24494038

LCPAS Wing Sizing Based on Test Results

150

FractureToughness

Kaap,Ksi √ in

40 60 80 100

200

100

50

0

Lower Wing• 767• 757• 737• 747-400• 777

Upper Wing• 767• 757• 737-300

-400, -500• 747-400

• 777 Fuselage2XXX-T3

7150

Upper Wing• 737-700,-800• 777

70557075-T651

2024-T3

2024-T351

Old Technology

7178-T651

7150

2324-T392224

Goodness

• 777 Body Stringers

Typical Yield Strength, Ksi

Boeing Structural Aluminum Alloy Improvements

500

550

600

650

700

750

800

850

900

1930 1950 1970 1990 2010 2030 2050

Specific Strength Stress / Density

(Ksi / pci)

Year

DC-3DC-7

B-47

B-52

Comet

737747

757767

IACC

Military

Helicopters

Wind Energy

CommercialWings

777-wing

CommercialTailsSpruce

Goose

UAVs

7055

23242224

7150

7075

2024

Metallics

Composites

Specific Strength Of Wing Bending Materials

Setting New Levels of Leadership

Less fuel usedLower emissionsQuieter for communities, crews, and passengersFewer hazardous materialsLess waste in production

Opening a New Era in Fuel Efficiency

Fuel consumption per trip

Fuel

con

sum

ptio

n pe

r sea

t

300 SEATS225 SEATS

250 SEATS275 SEATS

350 SEATS 400 SEATS

450 SEATS

500 SEATS

550 SEATS

200 SEATS

787

Current Twins

Current Quads

20% Better

Addressing the Market’s Needs (2006-2025)

61%

13%

3%

23%

27,200airplanes

2.6 trilliondelivery dollars*

*In year 2005 dollars

Regional jetsSingle-aisleTwin-aisle747 and larger

45%41%

4%10%

Composites50%

Aluminum20%

Titanium15%

Steel10%

Other5%

Carbon laminateCarbon sandwichOther compositesAluminumTitaniumTitanium/steel/aluminum

Composite Solutions Applied Throughout the 787

Partners Across The Globe Are Bringing The 787 Together (2007 data)

787 Final Assembly FlowEverett, Wash.

Increased Use of Composites Over Time

CompositeSteelTitaniumAluminumMiscellaneous

Materials

1%747

3%757/767

11%777 50%

787

Validation Process Ensures Safety, Reliability

Proven Certification process, validated by positive service experienceBoeing design objectives typically exceed minimum regulatory requirements

MaterialSpecimens

Elements

Assemblies

Components

Airplanes

Increasing Levels of Complexity

Static TestFatigue TestGround & Flight Tests

Static Test Airframe Moves To Testing Rig 25 April 2008

787 Airframe Static Test

Composites Also On Jet Engines

Composites at Work with Wind Turbines (Vestas V90)

BOR 90, Newest Carbon Fiber Flying Machine, Anacortes, WA 2008

www.GGYC.COM

Composites at Sea with the Maltese Falcon

Damon Roberts Insensys, Ltd

Maltese Falcon Rig Engineering and BuildStructural Overview

Bending moment at deck 17,000,000 NmTorque at deck 1,200 kNmHeight 58mSail area on each spar 800 sqmElliptical spar 1.8m by 1.1m max, tapering to 0.6 by 0.4m

at top and reducing to 1.1m diam at deckOpen slot down compression face

Maltese Falcon main spar, note slot for furling sails

Masts

Maltese Falcon Rig Cured in 4 pieces,secondary bonded together

Maltese Falcon Rig Stepping

Real Time Display in Wheel House,Maltese Falcon

Specific Strength, Log (ksi/pci)

Year

Zylon, dry

Vectran, dry

Oil DrillingAL-7050

AL-7150

Wind Energy

Metals

Uni, Rod

Spectra lines GR fiber, dry

Uni, Spring

DC-3

B-52

767 777

AL ladders Chop Fiber

747

4130

Corvette 787

B-47

DC-7

Autocopter

NanoFibers

Comet

Improvements in Specific Strength During the First 100 Years of Composites

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

AL Ti Steel Wood Plastic Glass CFRP

High Pressure Tanks

Diverse Modes of Transportation

( ) ( )( ) ( )

( )( )

+

+

+

+

++

+

+

+

( ) ( )+ +12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Trav

el T

ime

(Hou

rs)

100 200 300 400 500 600 700 800

AutomobileCommercial AC Using HubCommercial ACAdvanced Flying Automobile

Flight Destination (Miles)

Automobile

Commercial w Hub

Commercial AC

AFA Flight Mode

AFA Driving Mode

( ) ( )( ) ( )

( )( )

+

+

+

+

++

+

+

+

( ) ( )+ +12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Trav

el T

ime

(Hou

rs)

100 200 300 400 500 600 700 800

AutomobileCommercial AC Using HubCommercial ACAdvanced Flying Automobile

Flight Destination (Miles)

Automobile

Commercial w Hub

Commercial AC

AFA Flight Mode

AFA Driving Mode

( ) ( )( ) ( )

( )( )

+

+

+

+

++

+

+

+

( ) ( )+ +12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Trav

el T

ime

(Hou

rs)

100 200 300 400 500 600 700 800

AutomobileCommercial AC Using HubCommercial ACAdvanced Flying Automobile

Flight Destination (Miles)

Automobile

Commercial w Hub

Commercial AC

AFA Flight Mode

AFA Driving Mode

( ) ( )( ) ( )

( )( )

+

+

+

+

++

+

+

+

( ) ( )+ +12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

Trav

el T

ime

(Hou

rs)

100 200 300 400 500 600 700 800

AutomobileCommercial AC Using HubCommercial ACAdvanced Flying Automobile

Flight Destination (Miles)

Automobile

Commercial w Hub

Commercial AC

AFA Flight Mode

AFA Driving Mode

On the Land, In the Sky, On the Sea: The Best Is Yet to Come