CHEMESTRY

Post on 20-Jun-2015

174 views 9 download

Tags:

Transcript of CHEMESTRY

BIOLOGY CHEMISTRY-INTROPor:Sara Ferrer, Valentina Molina & Paula Castellanos

INTRO

Hi, In this presetation we are going to talk about

the atom history ( who invented it, how did it change through history,etc), physical and chemical changes ( their definition) and physical and chemical processes ( the definition, how does it works, and the description of the apparatus and their medical and industrial uses).

ATOM HISTORY

http://www.nobeliefs.com/atom.htm

ATOM MODEL

ATOMIC MODEL

“In chemistry and physics, atomic theory is a scientific theory of the nature of matter, which states that matter is composed of discrete units called atoms, as opposed to the earlier concept which held that matter could be divided into any arbitrarily small quantity. It began as a philosophical concept in ancient Greece and India and entered the scientific mainstream in the early 19th century when discoveries in the field of chemistry showed that matter did indeed behave as if it were made up of particles.”

THOMSOM

J. J. Thomson considered that the structure of an atom is something like a raisin bread, so that his atomic model is sometimes called the raisin bread model.

THOMSOM ATOM MODEL

He assumed that the basic body of an atom is a spherical object containing N electrons confined in homogeneous jellylike but relatively massive positive charge distribution whose total charge cancels that of the N electrons

THOMSOM ATOM MODEL

Thomson atomic model, earliest theoretical description of the inner structure of atoms, proposed about 1900 .

RUTHERFURD

Ernest Rutherford publishes his atomic theory describing the atom as having a central positive nucleus surrounded by negative orbiting electrons. This model suggested that most of the mass of the atom was contained in the small nucleus, and that the rest of the atom was mostly empty space. Rutherford came to this conclusion following the results of his famous gold foil experiment.

RUTHERFURD ATOM MODEL

his experiment involved the firing of radioactive particles through minutely thin metal foils (notably gold) and detecting them using screens coated with zinc sulfide (a scintillator).

RUTHERFURD ATOM MODEL

Rutherford found that although the vast majority of particles passed straight through the foil approximately 1 in 8000 were deflected leading him to his theory that most of the atom was made up of 'empty space'

BӦHR

Bohr's starting point was to realize that classical mechanics by itself could never explain the atom's stability. A stable atom has a certain size so that any equation describing it must contain some fundamental constant or combination of constants with a dimension of length.

BÖHR ATOM MODEL

The classical fundamental constants--namely, the charges and the masses of the electron and the nucleus--cannot be combined to make a length. Bohr noticed, however, that the quantum constant formulated by the German physicist Max Planck has dimensions which, when combined with the mass and charge of the electron, produce a measure of length.

BÖHR ATOM MODEL

Numerically, the measure is close to the known size of atoms. This encouraged Bohr to use Planck's constant in searching for a theory of the atom

BÖHR ATOM MODEL

SCHRӦDINGER

A powerful model of the atom was developed by Erwin Schrödinger in 1926. Schrödinger combined the equations for the behavior of waves with the de Broglie equation to generate a mathematical model for the distribution of electrons in an atom.

SCHRӦDINGER ATOM MODEL

The advantage of this model is that it consists of mathematical equations known as wave functions that satisfy the requirements placed on the behavior of electrons. The disadvantage is that it is difficult to imagine a physical model of electrons as waves.

CHEMICAL CHANGE

Chemical changes take place on the molecular level. A chemical change produces a new substance. Examples of chemical changes include combustion (burning), cooking an egg, rusting of an iron pan, and mixing hydrochloric acid and sodium hydroxide to make salt and water.

PHYSICAL CHANGES Physical changes are

concerned with energy and states of matter. A physical change does not produce a new substance. Changes in state or phase (melting, freezing, vaporization, condensation, sublimation) are physical changes. Examples of physical changes include crushing a can, melting an ice cube, and breaking a bottle.

SOME PHYSICAL PROCESS USED TO IDENTIFY THE MATTER STRUCTURE AT THE LAB.

Destillation:The evaporation and subsequent collection of a liquid by condensation as a means of purification: the distillation of water.

FLAME

CONDENSER

FLASK

DISTILATION FLACK

PROCEDURE

First you put impure water in the distilation flack. Then the gas will go all arround the condenser and the cold and hot water wil go out. And finally the distilled water will go down to the flask.

DESCRIPTION INDUSTRIAL: applications

include both batch and continuous fractional, vacuum, azeotropic, extractive, and steam distillation. The most widely used industrial applications of continuous, steady-state fractional distillation are in petroleum refineries, petrochemical and chemical plants and natural gas processing plants.

DESCRIPTION MEDICAL:for medicinal

purposes as well as to create balms, essences, and perfumes. About 1810 B.C. in Mesopotamia, the perfumery of King Zimrilim employed this method to make hundreds of litres of balms, essences and incense from cedar, cypress, ginger and myrrh every month. 

Evaporation: To convert or change into a vapor.

TRIPODE

First you set a tripode on the gound. Then you put a gauze ontop of it. Then you put the evaporation basin ontop of it and you fill it with water. Then you heat it and the vapor will go up.

DESCRIPTION

INDUSTRIAL: In the pharmaceutical

industry, the evaporation process is used to eliminate excess moisture, providing an easily handled product and improving product stability. Preservation of long-term activity or stabilization of enzymes in laboratories are greatly assisted by the evaporation process.

DESCRIPTION

MEDICINAL: To prodce some

medicines.

Filtiation:The act or process of filtering, especially the process of passing a liquid or gas, such as air, through a filter in order to remove solid particles

.

MEASURING CUP

FLACK

First you set a measuring cup full of impure water. Then pour impure water and pass it through a filter funnel. And then the clean water will stay in the flack.

DESCRIPTION INDUSTRIAL: removes turbidity from

water, both coarse as well as colloidal, adsorbing undesired odours, taste and colours and organic pollutant (antiparasitics, solvents, cyanotoxins), eliminating Iron, Manganese, Arsenic and other heavy metals (such as Chromium, Aluminium, Nichel, etc.)

DESCRIPTION

MEDICAL: The use of fine

filtration equipment, and especially membrane filter media, in the processes of medicine and health maintenance

Decantation:Decanting is done to separate particulates from a liquid by allowing the solids to settle to the bottom of the mixture and pouring off the particle-free part of the liquid.

PROCEDURE

First you put impure water and you pour it through a filter. Then the sand or the particles with separate from the water. And finally the water will go t the flack.

DESCRIPTION

INDUSTRIAL: Separate an

insoluble solid from a liquid

DESCRIPTION

MEDICAL: To make medicine.

DEFINITIONS OF CHEMICAL PROCESS

Burning:is the sequence of exothermic chemical reactions between a fuel and an oxidant accompanied by the production of heat and conversion of chemical species.

DESCRIPTION

INDUSTRIAL: Cleaning Paint

Hooks and Load Bars

Cleaning Extrusion Heads

Cleaning a Rejected Part for Re-Painting

DESCRIPTION MEDICAL •The medical practice or

technique of cauterization is the burning of part of a body to remove or close off a part of it in a process called cautery, which destroys some tissue, in an attempt to mitigate damage, remove an undesired growth, or minimize other potential medical harmful possibilities such as infections, when antibiotics are not available.

Electrolysis:is the passage of a direct electric current through an ion-containing solution

GAUZEEVAPORATING BASIN

TRIPODE

DESCRIPTION INDUSTRIAL:

Production of aluminium, lithium, sodium, potassium, magnesium, calcium

Coulometric techniques can be used to determine the amount of matter transformed during electrolysis by measuring the amount of electricity required to perform the electrolysis

Production of chlorine and sodium hydroxide

MEDICAL: To get ways to help

th health of the people.

Neutralization:Reaction between an acid and a base which produces a neutral solution (pH = 7).

DESCRIPTION INDUSTRIAL: Liquid Caustic (NaOH) is most

common in 50% concentrations. Because of safety issues, some customers, to avoid a hazardous liquid, may opt for passive neutralization via Lime or Limestone in its solid, mineral form, despite its bulk and weight. Sodium Hydroxide is often preferred because of its solubility. Unfortunately, the neutralization process also forms salts that are very soluble in water. 

Reduction:The act or process of reducing

DESCRIPTION

INDUSTRIAL:

Application ProcessHC/VOC/CO Control Technology

Technology NOx/CO Control Technology

PM Control Technology

Chemical Industry,Commercial &Industrial Processes

Surface coating, printing, chemical and petrochemical industries, industrial and commercial processes, manufacturing processes using organic solvents, etc.

2-way VOC Oxidation Catalyst2-way HVOC Oxidation Catalyst & Housing

3-way NSCR CatalystSCR deNOx Catalyst & Housing

PM Trap SystemCombined Catalyst & Trap System

Ionization:is the process of converting an atom or molecule into an ion by adding or removing charged particles such as electrons or ions

DESCRIPTION INDUSTRIAL: Ionizing has many

industrial, military, and medical uses. Its usefulness must be balanced with its hazards, a compromise that has shifted over time. For example, at one time, assistants in shoe shops used X-rays to check a child's shoe size, but this practice was halted when the risks of ionizing radiation were better understood.

Fermentation:An anaerobic (without oxygen) cellular process in which organic foods are converted into simpler compounds, and chemical energy (ATP) is produced.

DESCRIPTION INDUSTRIAL: A variety of bacteria are

used in the production of olives, cucumber pickles, and sauerkraut from the raw olives, cucumbers, and cabbage, respectively. The selection of exactly the right bacteria and the right conditions (for example, acidity and salt concentration) is an art in producing food products with exactly the desired flavors.

DESCRIPTION

MEDICAL: To ,make medicine

for the health.

PHISICAL PROPERTIES

Is a characteristic of a substance that does not involed a chemical change, such us density,color or hardness.

LIST OF PHYSICAL PROPERTIES•absorption (physical)•Absorption (electromagnetic)•albedo•angular momentum•area•brittleness•boiling point•capacitance•color•concentration•density•dielectric•ductility•distribution•efficacy•elasticity

•electric charge•electrical conductivity•electrical impedance•electric field•electric potential•emission•flow rate•fluidity•frequency•hardness•inductance•Intrinsic impedance•intensity•irradiance•length

•location•luminance•Luminescence•luster•malleability•magnetic field•magnetic flux•mass•melting point•moment•momentum•opacity•permeability•permittivity•plasticity•pressure

•radiance•solubility•specific heat•resistivity•reflectivity•refractive index•spin•strength•stiffness•temperature•tension•thermal conductivity•velocity•viscosity•volume•wave impedance

CHEMICAL PROPERTIES

Is a property of matter that describes a substance ability to participate in chemical reactions

LIST OF CHEMICAL PROPERTIES

Heat of combustion Enthalpy of formation Toxicity Chemical stability in a given environment Flammability (The ability to burn) Preferred oxidation state(s) Coordination number

REFERENCES

http://my.hrw.com/sh2/sh07_10/student/flash/visual_concepts/75013.htm

http://my.hrw.com/sh2/sh07_10/student/flash/visual_concepts/75016.htm

http://my.hrw.com/sh2/sh07_10/student/flash/visual_concepts/75014.htm

http://my.hrw.com/sh2/sh07_10/student/flash/sample_problems/20021.htm

http://my.hrw.com/sh2/sh07_10/student/flash/virtual_investigations/hst/mat/hst_mat_vi.html