Characterization of Forecast Error using Singular Value Decomposition

Post on 01-Feb-2016

53 views 0 download

Tags:

description

Characterization of Forecast Error using Singular Value Decomposition. Andy Moore and Kevin Smith University of California Santa Cruz Hernan Arango Rutgers University. Outline. An overview of singular value decomposition (SVD) Flavors of SVD Duality of SVD Norms Unstable jet - PowerPoint PPT Presentation

Transcript of Characterization of Forecast Error using Singular Value Decomposition

Characterization of Forecast Error using Singular Value Decomposition

Andy Moore and Kevin SmithUniversity of California Santa Cruz

Hernan ArangoRutgers University

Outline

• An overview of singular value decomposition (SVD)• Flavors of SVD• Duality of SVD• Norms• Unstable jet• California Current

Singular Value Decomposition (SVD)

Ae eSquare Matrix:

Right singular vectors: Au vLeft singular vectors: T A v u

T 2A Au u T 2AA v vTA UΣV

A generalization of eigenvectors for rectangularmatrices.

-1A EΛERectangular Matrix:

Σ Important rank/dimension info

Think Covariance!

u1

u2 v1

v2

A

p pd dt Mx x

SVD and “Model” Errors

Perfect model:

( )d dt M t x x εImperfect model:

( ) ( ) ( )pt t t x x x

( )d dt t x M x ε

Errors:

TLM:

Tangent linearmodel

Error

State vector: T, , , ,T S u v x

0

( ) (0, ) (0) ( , ) ( )t

t t t d x M x M ε

Singular Value Decomposition (SVD)

ComplimentaryFunction (CF)

Particular integral(PI)

SVD of CF – Singular vectors of initial conditions (i.e. ECMWF EFS)

SV 1

SV 2

Initial ConditionCovariance

at t=0

SV 1

SV 2

Final TimeCovariance

at t=t

Singular Value Decomposition (SVD)

ComplimentaryFunction (CF)

Particular integral(PI)

SVD of PI – Stochastic optimals (SO)

SO 1 (q1)

SO 2(q2)

Model ErrorCovariance

at t~0

Model ErrorCovariance

at t=t

SO 1 (q1)

SO 2(q2)

0

( ) (0, ) (0) ( , ) ( )t

t t t d x M x M ε

Duality of SVD

Fastest growingperturbations

Dynamics ofmeander and

eddy formation

Fastest growingerrors

Most predictablepatterns

Fastest lossof predictability

Flavors of SVD

( )d dt t x M x ε

?

Flavors of SVD

0 (0)d dt x M x εInitial condition error:

Find the 0 that maximizes:T ( ) ( )t t x P x

Subject to the constraint:

T T0 0 (0) (0) 1 ε Cε x C x

Equivalent to the generalized eigenvalue problem:

T (0)= (0) M PM x C xand SVD of: 1 2 1 2P MC

FInal time norm

Initial time norm

Illustrative Example – A Zonal Jet600km

360k

m500m deep, f=10-4, =0, x-15km, z=100mEastward Gaussian jet, 40km width, 1.6ms-1

SV time interval = 2 days. Energy norm, P=C.

TM PMSVD:

T

dt dt M P MSVD:

T dtM PMSVD:

SVD:| '| T 'ct t t

t te dtdt M PM

Initial SV

Forcing SV

Stoch Opt (white)

Stoch Opt (red)

tc= 2 days

Periodic Channel & Zonal Jet

x

y

xz

x

y

xz

Initial Final

Conservation of wave action(or pseudomomentum):

Doppler shifting of (ku) isaccompanied by increase in E(Buizza and Palmer, 1995).

E

ku

Baroclinically Unstable Jet

1000km

2000

km

x=10km, f=-10-4, =1.6×10-11

t=0 t=50 days

SST SST

SH

Initial Condition Singular Vectors

Singular Vector #12 Singular Vector #12

Singular Vector #11Singular Vector #11

SSH SSH

SSH SSH

t=0 t=2 days

t=0 t=2 days

Energy norm at initial and final time

The Forecast Problem

SV 1

SV 2

Analysis ErrorCovariance

at t=0

SV 1

SV 2

Forecast ErrorCovariance

at t=t

t=0 t=T

forecast

Forecast initialcondition error=

analysis error

1T 1

ax E x

Tf fM FM

Ea F

Perform SVD on:

subject to:

(Ehrendorfer & Tribbia, 1998)

?

fM

The Inverse Analysis Error Covariance, (Ea)-1

1 1 T 1 a GE RD G

1 T 1 T D G R G VTV

InverseAnalysis

errorcovariance Hessian matrix

Hessian matrix Primal spaceLanczos vectorexpansion from

4D-Var

The number Lanczos vectors= number of 4D-Var inner-loops

PriorErrorCov.

Adjointof

ROMS

Tangentof

ROMS

ObsErrorCov.

The Forecast Error Covariance, F

Experience in numerical weather prediction atECMWF suggests that F=E is a good choice(Buizza and Palmer, 1995).

We will assume the same here…

… more on this later however…

Evolved Analysis Error Covariance

t0 ta tf

(Ea)-1 (Ea)-1

Ma Mf

Analysiscycle

(4D-Var)

Forecastcycle

Evolved Analysis Error Covariance

1 T T T Ta

a a a a e eM E M M VTV M V TV

We actually need the analysis error at the end of theanalysis cycle:

so we need the time evolved Lanczos vectors, Ve.

T 1 V D V I T 1 e eV D V Ibut

Reorthonormalize using Gramm-Schmidt:T T Te e g gV TV V PTP V

where: g eV V P T g gV V Iand

Hessian Singular VectorsT T f fx M EM xFind the x that maximizes forecast error

Subject to the constraint that 1T 1

ax E x(Barkmeijer et al, 1998)

Solve the equivalent eigenvalue problem:

1 2 -1 -T T T -1 T 1 2 e f f eS L P V M EM V P L S w w

where TT LSL (Cholesky factorization of T)

and1 2 T T ew S L PV x A x and x A w

where A+ is the right generalized inverse, and AA I

The dimension ofthe problem is reduced to the #of 4D-Var inner-loops wholespectrum.

1 1 T T a e eE V P T P VBut

Baroclinically Unstable Jet:Identical Twin 4D-Var

Strong constraint primal 4D-Var1 outer-loop, 15 inner-loops2 day assimilation windowPerfect T obs everywhere onday 0, day 1, day 2Initial conditions only adjustedBalance operator applied

rms error in T

rms error in u rms error in v

rms error in SSH

Cycle #

Cycle #

Cycle #

Cycle #

4D-Var

No assim

Forecast4D-Var

No assim

Forecast

4D-Var

No assim

Forecast4D-Var

No assim

Forecast

Singular Values of 2 Day Jet Forecasts

log10

Cycle #

SV # SV1 SV1

SVnSVn

SV1 SV1

SVnSVn

Rugby Ball

SV1 SV1

SVnSVn

Cigar

SV1 SV1

SVnSVn

Hessian Singular Vectors

SV #1 SV #1

SV #1

Initial SSH Final SSH Initial SSH Final SSH

Initial SSH Final SSH

CYCLE #1 CYCLE #20

CYCLE #40

Hessian Singular Vectors

SV #1

SV #1

CYCLE #1

CYCLE #20

Initial SSH Final SSHt=2 daysForecast SSH

The California Current

30km, 10 km, 3 km & 1km grids, 30- 42 levels

Veneziani et al (2009)Broquet et al (2009)

ERA40 and CCMP forcing

SODA openboundaryconditions

fb(t), Bf

bb(t), Bb

xb(0), Bx

Previous assimilationcycle

Observations (y)

CalCOFI &GLOBEC

SST &SSH

Argo

TOPP Elephant Seals

Ingleby andHuddleston (2007)

Data from Dan Costa

Observations

4D-VarAnalysis

Posterior

Observations

4D-VarAnalysis

Posterior

Observations

4D-VarAnalysis

Posterior

prior prior prior

Sequential 4D-Var

8 day 4D-Var cyclesoverlapping every 4 days

30 Year Reanalysis of California Current1980-2010

Obs:Pathfinder, AMSR-E, MODIS, EN3, AvisoForcing: ERA40, ERA-Interim, CCMP (25 km)Analysis every 4 days, 8 day overlapping assim cycleshttp://www.oceanmodeling.ucsc.edu

Initial cost J

Final cost J

+ Final NL J

Moore et al. (2012)

CCS: Hessian SVs

Jan1999

June1999

Cycle #

Dec1999

10 kmCCS ROMS

log10 SV #

Spring

SV1 SV1

SVnSVn

Autumn

SV1 SV1

SVnSVn

Spring

SV1 SV1

SVnSVn

Autumn

SV1 SV1

SVnSVn

CYCLE #1

SV SSH initial

SV SSH final

Forecast SSH

10 kmCCS ROMS

CYCLE #23

SV SSH initial

SV SSH final

Forecast SSH

10 kmCCS ROMS

The Forecast Error Covariance

TT

T

aa aE I G B I G

d dR

d d

KKM M

KK

Recall that we can express the forecast error cov. as:

Posteriorerror

covarianceTangentLinear4D-Var

AdjointLinear4D-Var

Tf fffE DMM

Forecasterror

covariance

diag , , ,f b f aD E B B B

Controlpriors

Tangentlinearmodel

where:

1 2 1 T T T 1 2 ff fS L V D VL S w wM M

So the control SVD problem becomes:

(computational cost equals (# inner-loops)2)

Summary

• SVD provides information about forecast error growth.• Growing directions of the forecast error covariance error ellipsoid vary with time• SV structures become smaller scale• Flow and/or error dependent regimes• Future work: - explicit forecast error covariance - model error and weak constraint - control singular vectors