Chapter 2_bruillion_Zone.pdf

Post on 03-Apr-2018

218 views 0 download

Transcript of Chapter 2_bruillion_Zone.pdf

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 1/56

Chapter 2Reciprocal Lattice

Phys 175A

Dr. Ray Kwok

SJSU

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 2/56

Crystal Lattice

• Periodic f(r + T) = f(r) for any observable

functions such as electronic density,electric potential….etc. which means theyare all periodic functions because of thetranslational properties of the latticevectors.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 3/56

Fourier Transform

Fourier series (1D): f(r) = ∑n An ei2πnr/a

where the period is a.

such that f(r + ua) = f(r); u is an integer.

Or write f(r) ≡ ∑G AG eiGr

where G = 2πn/a (for 1D lattice)

and AG = (1/a) ∫cell f(r) e –iGr

dr

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 4/56

1D Translational Invariance

f(r + T) = ∑G AG eiG(r+T) = ∑G AG eiGr eiGT

= f(r) = ∑G AG eiGr

i.e. eiGT = 1

For example, if T = ua (1D),

then GT = 2πun = 2π·(integer).and eiGT = 1.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 5/56

3D Translational Invariance

For 3D lattice, eiG·T = 1

and T = u1a1 + u2a2 + u3a3 is the translationalvector or the lattice vectorDefine “reciprocal primitive vectors”

b1

= (2π /V) a2

x a3

b2 = (2π /V) a3 x a1

b3 = (2π /V) a1 x a2

where V is the volume of the primitive lattice cell

V = | a1 · a2 x a3|, such that bi· a j = 2πδij

and δij is the kronecker delta function.Note: {a}’s don’t have to be orthogonal.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 6/56

Reciprocal Lattice Vectors

Define G = v1b1 + v2b2 + v3b3

where the v’s are integersso that

G·T = 2π ( u1v1 + u2v2 + u3v3) = 2π·(integer)

[because bi· a j = 2πδij]and eiG·T = 1

In other words, because of the translational

invariance property of the crystal, there exist aset of vector G such that G·T = 2π·(integer).This set of vector defines another set of latticepoint in the Reciprocal Space.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 7/56

Reciprocal Vector Space

G has a unit of 1/length. Similar to the

wave-vector k in the plane waveexpression eik·r.

G has a meaning in Fourier transform, k-space, or momentum space.

It defines a set of lattice points in the k-

space.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 8/56

Direct and Reciprocal Lattice

• For every crystal, there is a set of space lattice

(crystal lattice) – location of lattice points in realspace where atoms and molecules are.

• There is also a set of reciprocal lattice in the

momentum space (k-space) – something we seein diffraction measurement. However, there isno physical object present at the reciprocal

lattice sites.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 9/56

Light Microscopy vs X-ray Crystallography

λ ~ 500 nm λ ~ 0.1 nm

see real space see reciprocal space

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 10/56

Tunneling Microscope vs X-Ray Diffraction

Reciprocal Lattice

(volume)“see” Direct Lattice(surface only)

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 11/56

d D

Diffraction maximum can be specified by the Miller indices [hkl]

Reciprocal nature of diffraction pattern

Bragg’s law: 2d sinθ = n λ d ∝ 1/sinθ

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 12/56

What do we learn from x-ray?

•Lattice parameters(Space Group)

•Symmetry (Point Group)

•Miller Index (h,k.l) foreach point

•Intensity (square ofstructural factor) of each

reflection

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 13/56

Properties of G – reciprocal lattice

each G is normal to a

lattice plane in realspace

G·T = 2πn. For a

fixed G and n, thereare many T vectorssatisfied this equation.

But they all lie on theplane perpendicular toG.

G

T

Crystal plane

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 14/56

Distance between planes = 2ππππ/G• If G has no common

factor (prime #), then the

distance between crystalplane perpendicular tothe G is 2π /G

d = T cosθ = 2πn/G

d’ = T’cosθ’ = 2π(n+1)/G separation of planes

= d’ – d = 2π /G

and G must be thesmallest reciprocal latticefor a given direction in k-space (prime #).

G

T

Crystal planes

T’

d d’

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 15/56

Small G dominates The larger the G, the closer the crystal plane, and less

atoms on the plane.

For example, in sc, separation of (100) is a,of (110) is a/ √2 = 0.71a

(110)

(100)

a1

a2

(210)

(100)

(110)

a 0.71a

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 16/56

Volume of the reciprocal cell

If the volume of a unit cell of the direct lattice is V, thenthe volume of a unit cell of the reciprocal lattice is (2π)D/Vwhere D is the dimension of the lattice, usually 3.

3D:

Vg = | b1 · b2 x b3|= (2π /V)3 {(a2 x a3) · (a3 x a1) x (a1 x a2)}

= (2π /V)3 {(a2 x a3) · [a3·(a1 x a2)] a1 - [a1·(a1 x a2)] a3}

= (2π /V)3 {(a2

x a3) · [a

3·(a

1x a

2)] a

1}

= (2π /V)3 {(a2 x a3) · V a1 }

= (2π)3 /V2 {(a2 x a3) · a1 }

= (2π)3 /V

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 17/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 18/56

Primitive Reciprocal Lattice Cell

The Wigner-Seitz cell of the reciprocal lattice

is called the Brillouin Zone

Reciprocal Lattice

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 19/56

Cubic – reciprocal lattice

=

=

=

za

ya

xa

3

2

1

a

a

a

( )( )

( )

+=

+=+=

xza

zyayˆ

a

21

3

21

2

2

1

1

a

a

a

( )( )

( )

+−=

++−=

−+=

zyxa

zyxa

zyxa

21

3

21

2

21

1

a

a

a

( )

( )

( )

=

=

=

z / 2b

y / 2b

x / 2b

3

2

1

a

a

a

π  

π  

π  

( )( )

( )

+=

+=+=

xzb

zyb

yxb

23

22

21

a

a

a

π  

π  

π  

( )( )

( )

+−=

++−=−+=

zyxb

zyxbzyxb

23

22

2

1

a

a

a

π  

π  

π  

( )3 / 2 aπ

( )3 / 24 aπ  

( )3 / 22 aπ  

SC

FCC

BCC

Direct Lattice Reciprocal Lattice Volume (k-space)

SC

BCC

FCC

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 20/56

bcc

Direct LatticePrimitive Cell

Wigner Cell

Reciprocal Lattice(fcc)

Brillouin Zone

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 21/56

fcc

Direct LatticePrimitive Cell

Wigner Cell

Reciprocal Lattice(bcc)

Brillouin Zone

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 22/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 23/56

1D - Reciprocal Lattice

a

Direct Lattice

bi·a j = 2πδij means b·a = 2π

so b = 2π /a along the same direction

2ππππ/a

First BZ

b=2π /a

Reciprocal Lattice

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 24/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 25/56

Diffraction in quantum mechanic Diffraction in quantum mechanic description: (Born

approx)

The transitional amplitude to scatter from k-state to k’-state = Mkk’ = <k’|V(r)|k> = ∫Ψ*(r) V(r) Ψ(r) dr

Ψ(r) = eik·r is the plane wave (think of the Bragg

scattering plane incident & diffracted waves) In Fourier series, V(r) = ∑ VG eiG·r (with the

translational property of the lattice)

Mkk’= ∑ VG ∫ ei(G + k - k’)·r dr = ∑ VG δ(G – ∆k)

= VG if G = ∆k , Mkk’= 0 otherwise. So the condition for Bragg scattering becomes

G = ∆k = k’ - k

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 26/56

Bragg Scattering For elastic scattering, frequency ω = ck is

unchanged. Speed of light is the same before &

after scattering off the target, so |k| = |k’|.write k + G = k’ and square both sides gives

2 k·G + G2 = 0,

k’

θ

∆k=G

θ

θ

k  αβ

2k·G = 2kG cosα = -G2

-2k cosβ = -G2k sinθ = G

2(2π/λ) sinθ = 2πn/d2d sinθ = nλwhich is the Bragg condition.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 27/56

X-ray data

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 28/56

Bragg Conditions

2 / G|Gk |

0GGk 2 2

=⋅

=+⋅r 

r r 

k’ ∆k=G

 B r a g g  P l a

 n e

k’

ko

Can use different k to probethe same G. Different circles,

different k and angles.

Or similarly, all k end on theperpendicular bisecting plane

of G would give Braggdiffraction. (BZ !!)

oGG/2

k

G/2

k’

BZ

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 29/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 30/56

Ewald Sphere

k’2θ

G

A sphere with radius k. Any point lands on the surface ofthe sphere is an allowed G value, i.e. diffraction occurs atthat particular angle & k.In principle, it can map out the whole reciprocal latticeusing different k.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 31/56

(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

REAL LATTICE

a1

a2

b1

b2

ExampleNote:a1·b2 = 0

a2·b1 = 0here {a} are the directlattice vectors & {b}are the reciprocallattice vectors

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 32/56

(0,1) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d0,1

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 33/56

(1,1) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d1,1

Note:

length is longerthan (0,1) sincespacing between(1,1) planes issmaller.

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 34/56

(0,0)

(2,1) planes

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d2,1

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 35/56

(0,0)

(3,1) planes

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d3,1

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 36/56

(0,1) planes

(1,1) planes(0,0)

(2,1) planes

(3,1) planes

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 37/56

(0,2) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d0,2

(0,2)

REAL LATTICE

a1

a2

b1

b2

with basis,for example

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 38/56

(1,2) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d1,2

(1,2)(0,2)

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 39/56

(2,2) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d2,2

(1,2)(0,2)

(2,2)

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 40/56

(0,0)

(3,2) planes

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

(1,2)(0,2)

(2,2)(3,2)

length=1/d3,2

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 41/56

(0,1) planes

(1,1) planes(0,0)

(2,1) planes

(3,1) planes

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

(0,0)(0,0)(0,0)(0,0)

(1,2)

(2,2)(3,2)

(0,2)

(0,2) planes

(1,2) planes

(2,2) planes

(3,2) planes

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 42/56

(0,1) planes(0,0)

RECIPROCAL LATTICE

(0,1)(1,1)

(2,1)(3,1)

length=1/d0,1

How do weorient thecrystal to

observediffraction fromthe (0,1)reflection?

REAL LATTICE

a1

a2

b1

b2

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 43/56

(0,0 )

(0,1) planes

nλ=2dsinθ

θ

Bragg condition-- upper beamhas to be an integral number ofwavelengths from the lower

beam forconstructive interference.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 44/56

(0,0 )

 ( 0, 1 ) ( 1, 1 )

( 2, 1 )

( 3, 1 )

 ( 0, 0 )

(0,1) planes

nλ=2dsinθ

θ 2θ

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 45/56

(1,1) planes

 (   0,  0  )

  (   0 ,  1  )  (   1 ,

  1  )

  (   2 ,  1  )

  (   3 ,  1  )

  (   0 ,  0  )

3D

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 46/56

  (    0 ,    0   )

(2,1) planes

   (    0 ,    1    ) 

   (    1 ,    1    ) 

   (    2 ,    1    ) 

   (    3 ,    1    ) 

   (    0 ,    0    ) 

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 47/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 48/56

Diffraction by a monatomic lattice

Bragg condition:In phase to get constructive interference (+ + + +)

Zero reflection otherwise (+ - + - + -)monatomic lattice

k k’

+

+

primitive cell

d

From here we got:

G = ∆k // d

G=2π /dBragg diffraction

Laude Equations

Construction of reciprocal lattice from EACH diffraction observedi.e. each reciprocal lattice point gives a spot on the screen

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 49/56

Diffraction by a lattice with a Basis

diatomic lattice

k k’+

+

d

conventional cell

d1

+

+

For diatomic lattice (assume identical atoms)ALL in phase to get max amplitude (++ ++)

Zero amplitude if the reflection from the basis

cancel (−+ −+).Likewise, if the basis reflections are in phase,

but the lattice reflections are out-of-phase,

amplitude still cancels (++ −−)i.e. to get max Bragg scattering, both latticereflections and basis reflections should be inphase. Amplitude is less if they are partially inphase or out-of-phase.

With multiple atoms, or non-identical atoms, scattering amplitudewould not be uniform. There are partial cancellations.

The resulting reciprocal lattice of the direct lattice would be modified.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 50/56

Fourier Analysis of a Basis Scattering amplitude

Mkk’ = <k’|V(r)|k> =∫Ψ*(r) V(r) Ψ(r) dr

where Ψ(r) = eik·r

V(r) = ∑ j V(r-r j) = ∑G,j VG eiG·(r-r j)

r j is the position of the jth atom in the unit cell. Mkk’= ∑ VG ∫ ei(G + k - k’)·(r-r

 j) dr

= ∑G ∑ j e-iG·r j [VG ∫ ei(G + k - k’)·r dr]

Define SG = ∑ j e-iG·r j f j the Structure Factor and f jis the Atomic Form Factor such that Mkk’∝ SG

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 51/56

Now if we specify G and rj as

we get:

Note that S G can be complex, because the scatteringintensity involves the magnitude squared of S G.

The evaluation of atomic form factor is complicated but forspherically-symmetric electron density, it can be written as

(Kittel)

 aaar bbbG 321332211 and  j j j j z y xvvv ++=++=

( )3212

1

v zv yv xis

 j jG

 j j je f S ++π−

=∑=

( )∫π=∞

0

2 sin)(4 dr 

Gr 

Gr r r n f   j j

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 52/56

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 53/56

For a BCC lattice, r j = (000) and (½ ½ ½). The structurefactor is then: ( )

 f eS 

vvvi

G321

1

++π−

+=

bcc structure factor

The structure factor is maximum SG = 2f when the sumof the indices is even, i.e. v1+v2+v3=2n .

The structure factor is SG = 0 when the sum of theindices is odd, i.e. v1+v2+v3=2n+1 .

(0,0,0)

The only G show up in diffraction

pattern are the ones fit the fcc latticepoints.

Same physical measurementregardless how the cell was defined.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 54/56

Example – fcc

primitive cellfccV=a3 /4

reciprocal cell

bccV =(4π /a)3 /2

* see primitive vectors

•lattice cell sc•w/ 4-pts basis

•V=a3

(0,0,0)

•reciprocal lattice sc

•V= (2π /a)3 [8x smaller

than the cube (4π /a)3

]•extra lattice points•extra diffraction spots?

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 55/56

For a FCC lattice, we have four atoms per init cell located at(000), (0 ½ ½), (½ 0 ½) and (½ ½ 0). The structure factor isthen:

fcc structure factor

(0,0,0)

The only G show up in diffractionpattern are the ones fit the bcc latticepoints.

Same physical measurement

regardless how the cell was defined.

( ) ( ) ( ) f eeeS 

vvivvivvi

G

3231211+π−+π−+π− +++=

When all indices are even or odd, then SG = 4f.When the indices are partially even and partially odd, thenSG = 0.

7/28/2019 Chapter 2_bruillion_Zone.pdf

http://slidepdf.com/reader/full/chapter-2bruillionzonepdf 56/56