Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22.

Post on 18-Dec-2015

224 views 0 download

Transcript of Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22.

Chang T., Zhang H., Guo Z., Guo X. Chang T., Zhang H., Guo Z., Guo X.

Gao HuajianGao Huajian

2014.04.222014.04.22

All pics from internet

Provides the most straightforward way for actuation and energy conversion.

Generally induced by an external source of energy.

Lack of intrinsic mechanism similar to downhill flow of water.

Barreiro et al., Science 320, 775 (2008) Fennimore et al., Nature 424, 408 (2003)

Kudernac et al., Nature 479, 208 (2011)

Thermal Electronic

vdW 0 vV V Tk

B vdWν zo 2 za 2

0

1 1

2 ( , ) ( , ) l ml m l m

k kk dq dq

m q q q q

0.0 0.5 1.0 1.5 2.03

4

5

6

7

8

ki

v

ke

v

Pot

entia

l coe

ffici

ents

(e

V/a

tom

/K)

Stiffness coefficient (kvdW

)

Guo Z, Chang T, Guo, X, Gao H, J Mech Phys Solids 60, 1676 (2012).

kvdW

kvdW0.5kvdW

B

C

D

Soft Hard

A

0.0 2.5 5.0 7.5 10.0

-30

-15

0

15

30 C

Vel

ocity

(nm

/ns)

Time (ns)

-25

0

25

50

kc = 0.48/4.8/7.7/9.6/12.0/14.4/14.4 nN/nm

k = 0.0096/0.096/0.144/0.192/0.24/0.288/0.096 nN/nm2

Dis

plac

emen

t (nm

)

B

A larger driving force can be generated by a larger stiffness gradient or a smaller local stiffness.

0.0 0.2 0.4 0.60

2

4

6

8

10

12A

0.801/2.403 300K 2.403/4.005 300K 0.801/4.005 300K 0.801/4.005 500K

Dis

plac

emen

t (nm

)

Time (ns)

0.0 0.2 0.4 0.60

6

12

18

24

30

36B

Vel

ocity

(nm

/ns)

Time (ns)

0 2 4 6 8

-30

-15

0

15

30

Vel

ocity

(nm

/ns)

Time(ns)

-12

-6

0

6

12C

Dis

plac

emen

t(nm

)

SuperpositionTemperature

Accel – Stable – DeaccelShuttles like a pendulum

Soft Hard

Durotaxis was first observed in living cells.

Active sensing

Lo et al., Biophys J 79, 144 (2000)

Water droplets undergo reverse durotaxis.

Wetting

Discher et al, Science 310, 1139 (2005)

Style et al., Proc. Natl. Acad. Sci. U.S.A. (2013)

Nanodurotaxis:Nanodurotaxis:

Neither Neither active sensing active sensing nornor wettingwetting

Stiffness gradient induces a bias van der Waals potential

0 3 6 9 12 15-48.51

-48.48

-48.45

-48.42

Inte

rlaye

r P

oten

tial (

meV

/ato

m)

Stiffness (nN/nm)

A

21.23

-6.79

-3.04

-0.20 -0.81 -0.30

2.37

5.99

-12.97

13.19

-5.49

-1.72

0.63

-0.34 -0.66

1.91

5.43

-12.02

-15

-10

-5

0

5

10

15

20

1st/2nd/3rd/4th rings (52 atoms each)on harder side

Inner region

1st/2nd/3rd/4th rings (52 atoms each)on softer side

Inte

rlaye

r F

orce

(pN

) Stiffness jump Stiffness gradient

B

Driving force comes mainly from the unbalance edge force

1st/2nd/3rd/4th ring at the rear end

4th/3rd/2nd/1st ring at the front end

Inner part

Unbalanced edge force/Net driving force6.29 pN/5.48 pN1.27 pN/0.93 pN

Partly (less) from thermal atomic vibration, as shown by Guo et al, JMPS (2012).

Partly (more) from out-of-plane deformation of substrate.

Contributions to edge force from substrate atoms at different position.

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

4.005 nN/nm Soft Hard

Su

bst

rate

De

form

atio

n (

nm

)

Longitudinal position

Contact area

0.801 nN/nm

Functional graded material

Marerial interface

Nanoporous array

*Chang T., Zhang H., Guo Z., Guo X. Chang T., Zhang H., Guo Z., Guo X.

*Gao HuajianGao Huajian

*2014.04.222014.04.22