Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

Post on 19-Feb-2016

31 views 2 download

Tags:

description

Chabot Mathematics. §5.1 Integration. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu. 4.4. Review §. Any QUESTIONS About §4.4 → Exp & Log Math Models Any QUESTIONS About HomeWork §4.4 → HW-21. §5.1 Learning Goals. Define AntiDerivative - PowerPoint PPT Presentation

Transcript of Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics§5.1

Integration

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 3

Bruce Mayer, PE Chabot College Mathematics

§5.1 Learning Goals Define AntiDerivative Study and compute

indefinite integrals Explore differential

equations and Initial/Boundary value problems

Set up and solve Variable-Separable differential equations

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 4

Bruce Mayer, PE Chabot College Mathematics

Fundamental Theorem of Calculus The fundamental theorem* of calculus

is a theorem that links the concept of the derivative of a function with the concept of the integral.• Part-1: Definite Integral

(Area Under Curve)

• Part-2: AntiDerivative

* The Proof is Beyond the Scope of MTH15

b

aaFbFdxxf

xfdxxfdxdxF

dxddxxfxF thenif

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 5

Bruce Mayer, PE Chabot College Mathematics

AntiDifferentiation Using the 2nd Part

of the Theorem F(x) is called the AntiDerivative of f(x)

• Example: Find f(x) when

• ONE Answer is

• As Verified by

dxxfxFxfdxdF or

34xdxxdf

4xxf

34 4xxdxdxf

dxd

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 6

Bruce Mayer, PE Chabot College Mathematics

Fundamental Property of Antiderivs The Process of Finding an

AntiDerivavite is Called: InDefinite Integration

The Fundamental Property of AntiDerivatives:• If F(x) is an AntiDerivative of the

continuous fcn f(x), then any other AntiDerivative of f(x) has the formG(x) = F(x) + C, for some constant C

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 7

Bruce Mayer, PE Chabot College Mathematics

Fundamental Property of Antiderivs Proof of G(x) = F(x) + C Assertion: both G(x) & F(x)+C are

AntiDerivatives of f(x); that is:

Using DerivativeRules

CxFdxdxfxG

dxd

CxFdxdxG

dxd

?

dxdC

dxdF

dxdG

?

0?

dxdF

dxdG

xfdxdF

dxdGxf

Derivative of a Sum

Derivative of a Const

Transitive Property

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 8

Bruce Mayer, PE Chabot College Mathematics

The Indefinite Integral The family of ALL AntiDerivatives of f(x)

is written

The result of ∫f(x)dx is called the indefinite integral of f(x)

Quick Example for:• u(x) has in INFINITE

NUMBER of Results, Two Possibilities:

CxFdxxf )( )(

Cxdxxdxxu 43 4

2or

4

4

xxG

xxF

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 9

Bruce Mayer, PE Chabot College Mathematics

The Meaning of “C” The Constant, C, is the y-axis “Anchor

Point” for the “natural Response” fcn F(x) for which C = 0.• C is then the y-intercept

of F(x)+C; i.e., Adding C to F(x) creates a “family” of

functions, or curves on the graph, with the SAME SHAPE, but Shifted VERTICALLY on the y-axis

CFG 00

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 10

Bruce Mayer, PE Chabot College Mathematics

The Meaning of “C” Graphically

-4 -3 -2 -1 0 1 2 3 4-10

-5

0

5

10

15

20

x

y =

G(x

) = F

(x)+

C =

7e-5

x/2 +

5x

- 8 +

CMTH15 • Familiy of AntiDerivatives

B. May er • 20Jul13

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 11

Bruce Mayer, PE Chabot College Mathematics

MATLA

B C

ode% Bruce Mayer, PE% MTH-15 • 20Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = -4; xmax = 4; ymin = -10; ymax = 20;% The FUNCTIONx = linspace(xmin,xmax,1000); y = 7*exp(-x/2.5) + 5*x -8;% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg(['white']) % whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y, x,y+9,x,y-pi,x,y+sqrt(13),x,y-7, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = G(x) = F(x)+C = 7e^-^5^x^/^2 + 5x - 8 + C'),... title(['\fontsize{16}MTH15 • Familiy of AntiDerivatives',]),... annotation('textbox',[.71 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'B. Mayer • 20Jul13','FontSize',7)hold onplot(zxv,zyv, 'k', zxh,zyh, 'k', [-1.4995, -1.4995], [ymin,ymax], '--m', 'LineWidth', 2)set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:5:ymax])

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 12

Bruce Mayer, PE Chabot College Mathematics

MuPA

D C

ode

Bruce Mayer, PEMTH15 20Jul13F(x) = 7*exp(-2*x/5) + 5*x -8 f(x) = int(G, x)G := 7*exp(-2*x/5) + 5*x -8dgdx := diff(G, x)assume(x > -6):xmin := solve(dgdx, x)xminNo := float(xmin)Gmin := subs(G, x = xmin)GminNo := float(Gmin)plot(G, x=-4..4, GridVisible = TRUE,LineWidth = 0.04*unit::inch)

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 13

Bruce Mayer, PE Chabot College Mathematics

Evaluating C by Initial/Boundary A number can be found for C if the

situation provides a value for a SINGLE known point for G(x) → (x, G(x)); e.g., (xn, G(xn)) = (73.2, 4.58)• For Temporal (Time-Based) problems the

known point is called the INITIAL Value– Called Initial Value Problems

• For Spatial (Distance-Based) problems the known point is called the BOUDARY Value– Called Boundary Value Problems–

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 14

Bruce Mayer, PE Chabot College Mathematics

Common Fcn Integration Rules1. Constant Rule:

for any constant, k

2. Power Rule:for any n ≠ −1

3. Logarithmic Rule:for any x ≠ 0

4. Exponential Rule:for any constant, k

Cxkdxk

Cnxdxxn

n

1

1

Cxdxx

ln 1

Cek

dxe kxkx 1

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 15

Bruce Mayer, PE Chabot College Mathematics

Integration Algebra Rules1. Constant Multiple Rule: For any

constant, a

2. The Sum or Difference Rule:

• This often called the Term-by-Term Rule

dxxuadxxua

dxxvdxxudxxvxu

dxxqdxxpdxxqxp

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 16

Bruce Mayer, PE Chabot College Mathematics

Example Use the Rules Find the family of

AntiDerivatives corresponding to

SOLUTION: First Term-by-Term → break up each

term over addition and subtraction:

dxxx 122

dxdxxdxxdxxx 1 2 12 22

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 17

Bruce Mayer, PE Chabot College Mathematics

Example Use the Rules Move out the constant in the 2nd integral

(2), and state sqrt as fractional power

Using the Power Rule

CleaningUp →

dxdxxdxxdxxx 1 2 12 2122

Cxxxdxdxxdxx

1012/12

12 1 2

1012/1122/12

Cxxxdxxx 2/33

2

34

3 12

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 18

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume The propensity to consume (PC) is the

fraction of income dedicated to spending (as opposed to saving).

A Math Model for the marginal propensity to consume (MPC) for a certain population:

• Where – MPC is the rate of change in PC – x is the fraction of income that is disposable.

xexMPC 8.0

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 19

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume If the propensity to consume is 0.8

when disposable income is 0.92 of total income, find a formula for PC(x)

SOLUTION: From the Problem Statement that the

MPC is a marginal function discern that

Thus the PC fcn is the AntiDerivative of MPC(x)

,xPCdxdxMPC

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 20

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume Find PC by

Integrating

This is satisfactory for a general solution, but need the particular solution so that PC(0.92) = 0.8

dxxMPCxPC

dxe x 8.0

Ce x

8.0

8.01

Ce x 8.025.1

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 21

Bruce Mayer, PE Chabot College Mathematics

Example Propensity to Consume Use the (x,PC) = (0.92,0.8) Boundary

Value to Find a NUMBER for the Constant of Integration, C

With C ≈ 1.4, state the particular solution to this Boundary Value Problem

4.1

4.125.1 8.0 xexPC

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 22

Bruce Mayer, PE Chabot College Mathematics

Differential Equations (DE’s) A Differential Equation is an equation

that involves differentials or derivatives, and a function that satisfies such an equation is called a solution

A Simple Differential Equation is an equation which includestwo differentials in the formof a derivative

)(xfdxdy

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 23

Bruce Mayer, PE Chabot College Mathematics

Differential Equations (DE’s) For some function f. Such a Simple

Differential Equation can be solved by integrating:

In summary the Solution, y, to a Simple DE can be found by the integration

dxxfdxdxdydxxf

dxdyxf

dxdy

1

dxxfydxxfdydxxfdydxxfdy )(1

dxxfy )(

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 24

Bruce Mayer, PE Chabot College Mathematics

Example Simple DE From the

Previous Example As previously solved for the general

solution by Integration:

Then used the Boundary Value, (0.92, 0.8), to find the Particular Solution

xexPCdxd 8.0

CexPC x 8.025.1

4.125.1 8.0 xexPC

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 25

Bruce Mayer, PE Chabot College Mathematics

Variable-Separable DE’s A Variable Separable Differential

equation is a differential equation of the form• For some integrable functions f and g

Such a differential equation can be solved by separating the single-variable functions and integrating:

dxxfdyygdxxfdyygygxf

dxdy

dxyg

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 26

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics The rate of change in volume (in cubic

centimeters) of water in a draining container is proportional to the square root of the depth (in cm) of the water after t seconds, with constant of proportionality 0.044.

Find a model for the volume of water after t seconds, given that initially the container holds 400 cubic centimeters.

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 27

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics SOLUTION: First, TRANSLATE the written

description into an equation:• “rate of change

in volume”• “is proportional to the

square root of volume”• “with constant of

proportionality equal to 0.044”

tVdtd

Vk

044.0k

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 28

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics So the (Differential)

Equation Note that the right side does not

explicitly depend on t, so we can’t simply integrate with respect to t. • Instead move the expression

containing V to the left side: The Variables are now Separated,

allowing simple integration

VdtdV 044.0

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 29

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics Integrating

Where

SquaringBoth SidesFind:

1221 CCC

2022.0 CtV

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 30

Bruce Mayer, PE Chabot College Mathematics

Example Fluid Dynamics For The particular solution find the a

number for C using the Initial Value: when t = 0, V = 400 cc:• Sub (0,400) into

DE Solution

Thus the volume of water in the Draining Container as a fcn of time:

20400 C

220022.0 ttV

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 32

Bruce Mayer, PE Chabot College Mathematics

All Done for Today

LOTS moreon DE’s

in MTH25

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 33

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics

Appendix

srsrsr 22

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 34

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 36

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 37

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 38

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 40

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 41

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 42

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 43

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 44

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 45

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 46

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-22_sec_5-1_Integration.pptx 47

Bruce Mayer, PE Chabot College Mathematics