Bifurcation and Chaos in Coupled BVP...

Post on 12-Mar-2020

8 views 0 download

Transcript of Bifurcation and Chaos in Coupled BVP...

Bifurcation and Chaos in Coupled BVPOscillators

T. Ueta†, T. Kosaka‡, and H. Kawakami††Tokushima University, Japan ‡Fukuyama University Japan

Bifurcation and Chaos in Coupled BVP Oscillators – p.1/42

History of BVP Oscillator• Introduced as a simplified model of

Hodkin-Huxley equation (four-dimensionalautonomous system)

• alias is FitzHugh-Nagumo oscillator• extraction of excitatory activity from HH

equation

x = c(x − x3

3+ y + z)

y = −1c

(x + by − a)

Bifurcation and Chaos in Coupled BVP Oscillators – p.2/42

Analogue of BVP equation

An natural extension of van der Pol equation.• 2nd dimensional autonomous system.• Evaluate a resistance in a coil.• Adding a bias source to destroy symmetric

property.

• A. N. Bautin, “Qualitative investigation of aParticular Nonlinear System,” PPM, vol. 39, No.4, pp. 606–615, 1975. → Topologicalclassification of solutions in BVP equation

• Doi, et. al: Response of BVP with an impulsiveforce

Bifurcation and Chaos in Coupled BVP Oscillators – p.3/42

Coupled BVP equation• O. Papy, H. Kawakami: Analysis on coupled

BVP equations from symmetry point of view.• Kitajima: Chaos generation from symmetry

coupled BVP equations

No chaotic oscillations in symmetrical configuration of

coupled BVP equations

Bifurcation and Chaos in Coupled BVP Oscillators – p.4/42

BVP Oscillator

g(v)C

L

v

E

R

Circuit equation:

Cdvdt= −i − g(v)

Ldidt= v − ri + E

(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.5/42

Nonlinear conductor2SK30A FET:

47K 47K

100

2SK30AGR5B

g(v) = −a tanh bv

Bifurcation and Chaos in Coupled BVP Oscillators – p.6/42

Fitting

Marquardt-Levenberg method (nonlinear least squaremethod)

a = 6.89099 × 10−3, b = 0.352356

Bifurcation and Chaos in Coupled BVP Oscillators – p.7/42

Approximation error

g(v) = −a tanh bv

with a = 6.89099 × 10−3, b = 0.352356Theoretical value versus measurement value.

-0.001

-0.0005

0

0.0005

0.001

-10 -5 0 5 10

fittin

g er

ror

[A]

v [V]→

A reasonable approximation.Bifurcation and Chaos in Coupled BVP Oscillators – p.8/42

BVP equation

x = −y + tanh γxy = x − ky.

· = d/dτ, x =

CL

v, y =ia

τ =1√

LCt, k = r

CL, γ = ab

LC

Bifurcation and Chaos in Coupled BVP Oscillators – p.9/42

Bifurcation of equilibria for single BVPoscillator

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k

γ

d

h1 h2

G

(b)

(a)

(c)

(d)

(e)

Oscillatory

Bifurcation and Chaos in Coupled BVP Oscillators – p.10/42

An example phase portrait

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y →

x →

At region (d):• Two stable sinks.• A saddle.• Two unstable

limit cycles.• A stable limit cy-

cle.

Bifurcation and Chaos in Coupled BVP Oscillators – p.11/42

Circuit parameters setup

L = 10 [mH], C = 0.022 [µF]

γ = 1.6369909,

LC= 674.19986.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k

γ

d

h1 h2

G

(b)

(a)

(c)

(d)

(e)

Oscillatory

Bifurcation and Chaos in Coupled BVP Oscillators – p.12/42

Coupled BVP oscillators

A pair of BVP oscillators coupled by a register R.

g(v1)L

v1

C

r1

g(v2)L

v2

C

r2

R

G = 1/R

Bifurcation and Chaos in Coupled BVP Oscillators – p.13/42

Circuit equation

Cdv1

dt= −i1 + a tanh bv1 −G(v1 − v2)

Ldi1dt= v1 − ri1

Cdv2

dt= −i2 + a tanh bv2 −G(v2 − v1)

Ldi2dt= v2 − ri2

(2)

Bifurcation and Chaos in Coupled BVP Oscillators – p.14/42

Scaling

x j =

CL

v j, y j =i j

a, k j = r j

CL, j = 1, 2.

τ =1√

LCt, γ = ab

LC, δ =

LC

G.

x1 = −y1 + tanh γx1 − δ(x1 − x2)y1 = x1 − k1y1

x2 = −y2 + tanh γx2 − δ(x2 − x1)y2 = x2 − k2y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.15/42

Symmetry

x = f (x)

where, f : Rn → Rn : C∞ for x ∈ Rn.

P : Rn → Rn

x 7→ Px

P-invariant equation:

f (Px) = P f (x) for all x ∈ Rn

Bifurcation and Chaos in Coupled BVP Oscillators – p.16/42

A matrix P• in case k1 = k2,

P =

0 0 1 00 0 0 11 0 0 00 1 0 0

Γ = P,−P, In,−Informs a group for production.

• in case k1 , k2:

Γ = In,−In

Bifurcation and Chaos in Coupled BVP Oscillators – p.17/42

Bifurcation of Equilibria

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k2

k1

0D

2D

4D

Bifurcation and Chaos in Coupled BVP Oscillators – p.18/42

Poincaré mapping

A solution ϕ(t) :

x(t) = ϕ(t, x0), x(0) = x0 = ϕ(0, x0) .

Poincaré section:

Π = x ∈ Rn | q(x) = 0 ,

T : Π→ Π; x 7→ ϕ(τ(x), x) ,

The fixed point x0 for the limit cyclde ϕ(t):

T (x0) = x0.

Bifurcation and Chaos in Coupled BVP Oscillators – p.19/42

Characteristic equation

χ(µ) = det

(

∂ϕ

∂x0− µIn

)

.

Local bifurcations:• µ = 1: tangent bifurcation G• µ = −1: period-doubling bifurcation I

• µ = e jθ: Neimark-Sacker bifurcation NS• µ = ±1: Pitchfork bifurcation P f

Bifurcation and Chaos in Coupled BVP Oscillators – p.20/42

Bifurcation diagram, δ = 0.337(R =

2000[Ω])

0

0.5

1

1.5

2

0 0.5 1 1.5 2

G

Pf

Pf

Chaotic area

k1

k 2

h

I1

two limit

cycles

two limit

cycles

non-oscillatory

h

I2

I2

I1

G

G

single limit cycle

Bifurcation and Chaos in Coupled BVP Oscillators – p.21/42

Hopf bifurcation k1 = 1.18(r1 ≈ 800)

r2 ≈ 600

r2 ≈ 400

Bifurcation and Chaos in Coupled BVP Oscillators – p.22/42

Period-doubling cascade

r2 ≈ 400( k ≈ 0.72)

r2 ≈ 395[Ω] Rössler-type attractor

Bifurcation and Chaos in Coupled BVP Oscillators – p.23/42

Presence of Double scroll

r2 ≈ 390→ r2 ≈ 380[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.24/42

Chaotic attractor. r1 = 370[Ω]

(a) v1-r1i1. (b) v2-r2i2.

(c) v1-v2, (d) r1v1-r2i2.

Bifurcation and Chaos in Coupled BVP Oscillators – p.25/42

Numerical simulation

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

x1-y1 x2-y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.26/42

Phase portrait between oscillators

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

(c) x1-x2 (d) y1-y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.27/42

Poincaré mapping

x1-x2 plane: Π = x|q(x) = y1 = 0

-1

-0.5

0

0.5

1

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

x 2 →

x1 →

0

0.02

0.04

0.06

0.08

0.1

-0.2 -0.19 -0.18 -0.17 -0.16

x 2 →

x1 →

Bifurcation and Chaos in Coupled BVP Oscillators – p.28/42

Time response of Oscillator 1

Chaotic attractor. δ = 0.337, k1 = 1.187, k2 = 0.593,(R = 2000[Ω], r1 = 400[Ω], r2 = 800[Ω]).

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

x 1 →

t →

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

y 1 →

t →

Bifurcation and Chaos in Coupled BVP Oscillators – p.29/42

Time response of Oscillator 2

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400x 2

→t →

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

y 2 →

t →

Bifurcation and Chaos in Coupled BVP Oscillators – p.30/42

Projection into x1-x2-y1—(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.31/42

Projection into x1-x2-y1—(2)

Bifurcation and Chaos in Coupled BVP Oscillators – p.32/42

Projection into x1-x2-y1—(3)

Bifurcation and Chaos in Coupled BVP Oscillators – p.33/42

Enlargement of bifurcation diagram

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

NS

G

GPf

Pf

I

I

bi-stable

k1

k 2

Rossler type

Double scrollI

I

Bifurcation and Chaos in Coupled BVP Oscillators – p.34/42

r2 = 390→ 360[Ω]

Bifurcation and Chaos in Coupled BVP Oscillators – p.35/42

The end of scrolling. left: r2 = 360[Ω], right: r2 =

358[Ω], lower: r2 = 346[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.36/42

to be synchronized

upper left: r2 = 342[Ω], upper right: r2 = 340[Ω].

lower left: r2 = 290[Ω], lower right: r2 = 184[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.37/42

Features• There is no period-doubling route for k1 = k2.• (Osc. 1) equilibrium + (Osc. 2) limit cycle =

(Osc. 1+2) chaotic solution.

• Cubic characteristics is essential: g(v) = ax + bx3

with a = −2.27 × 10−3, b = 4.72 × 10−5.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x 2 →

x1 →

Bifurcation and Chaos in Coupled BVP Oscillators – p.38/42

An application: Hybrid coupling

g(v1)L

v1

C

r1

L

v2

C

r2

G1

g(v2)

G2

i01 i02

Bifurcation and Chaos in Coupled BVP Oscillators – p.39/42

Period-doubling cascade

Bifurcation and Chaos in Coupled BVP Oscillators – p.40/42

Chaotic response

Bifurcation and Chaos in Coupled BVP Oscillators – p.41/42

RemarksA resistively coupled BVP oscillators• Bifurcation of periodic solutions• Chaos is observed with k1 , k2.• No bifurcation for k1 = k2

Future problems:• synchronization of oscillators• higher dimensional cases

Bifurcation and Chaos in Coupled BVP Oscillators – p.42/42