BASIC DATA OF ELECTRICAL DISCHARGES

Post on 07-Jan-2022

13 views 0 download

Transcript of BASIC DATA OF ELECTRICAL DISCHARGES

DOCUIENT ROOM,MENT ROOM 36-412

- RESEARCH LABORATORY OF ELECTRONICSMASSACHUSETiS INSITI-UTE OF TECHNOLOGY

BASIC DATA OF ELECTRICAL DISCHARGESi

SANBORN C. BROWN

W. P. ALLIS

TECHNICAL REPORT 283

JUNE 9, 1958

FOURTH EDITION

jr

,,- _1,, ,,,. '

I" 'I~s X

.t o

d·..;

/I'l O ~

C %1"

/ 4-1/Q -~k~ ,'I

/I/An I

/

RESEARCH LABORATORY OF ELECTRONICSMASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

I

roe I I I I I IIII · ......

ye urrrrrrr_�� .I. ���,,�.ur·nafi4u�nua·r�:·���uwrawti�·.·*

I

11

r"llh5;.."f S,�a:p·

`F3·· ,, ,,

'

aEl�·

... - ,:.:;` �- 't·il'·1 Uun�. ,"· "rqrci

I.1

I .

1 I I

T

The Research Laboratory of Electronics is an interdepartmentallaboratory of the Department of Electrical Engineering and theDepartment of Physics.

The research reported in this document was made possible in partby support extended the Massachusetts Institute of Technology,Research Laboratory of Electronics, jointly by the U. S. Army (Sig-nal Corps), the U. S. Navy (Office of Naval Research), and the U. S.Air Force (Office of Scientific Research, Air Research and Develop-ment Command), under Signal Corps Contract DA36-039-sc-64637,Department of the Army Task 3-99-06-108 and Project 3-99-00-100.

- I I I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report 283 June 9, 1958

BASIC DATA OF ELECTRICAL DISCHARGES

Sanborn C. Brown

W. P. Allis

Fourth Edition

I_ I _ �

Table of Contents

I. Potential Energies: Vx,

a. Excitation and ionizat

b. Excitation and ionizat

c. Electron affinities .

1Ii . . . . . . . . . . . . . . . . '. . . . . 1

ion potentials of atoms ............. . 1

tion potentials of molecules . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Collision Probabilities ..........

a. Elastic collisions by electrons, Pc

1. H2 and He ............

2. H, H and D ..........

3. Na, Rb, K, Cs .........

4. Hg, Zn, Cd ...........

5. Th ...............

6. Ne, A, Kr, Xe .........

7. 02, N2 , CO ...........8. CO 2 , NO.

9. NH3, H20, HC1 . . .

10. CH4 , C 2 H6 ' C 3H 8 . .

11. HCN, CzH Z .H ' ......12. CC14 .

13. C 6 H 6 C 2 H 4 .

14. CH4, CH6 C3H C4H10 ...

15. CHC1 3, CH 2 C1 2, CH 3C1 .

16. CH 3 OH, CH 3 F, CH 3 NH 2 . . .

17. n- C3H7OH, CH5OH, CH3OH, H20

18. (CH 3 ) 3 CH, (CH3 )3 N . . . . . .

19. C 2 H5 OH, (CH 3 )2 0 .

20. (CH 3 )2 0, (CH 3 )2 NH, (CH3 )2 CH 2 .

21. Butane, isobutane . . . . . . . .

22. n-Pentane, tetramethyl methane .

b. Potential energy curves

1. Hydrogen ............

2. Oxygen .............

c. Inelastic collisions by electrons

1. Qx for Hg ............

2. Pi and Px for He, H2, Ne, A . .

3. He ...............

4. Ne ...............

5. A................

6. Kr ...............

7. Xe ...............

· . . . . . .· . . . .. . . . 6

. . .· ·.· ·. .· . ..·.· · .· · 7

.·· ·. · ·. · ·. ·.· ·.· .. .· ·. 7

·. . . . . . . . . . . . . . .· 8

.· ·. · ·. · ·. · ·... .· ·.· .· · 8

·. . . . . . . . .· . . . . .· 9

.· . .· ·· . . . . . . . . 9

... . . . . . . . . . . . . . 10

..... .... . . .10

. .... . . . . . . . ......11

... . . . . . . . . . . . . . 11

................ 12

................ 12

................ 13

................ 13

................ 14

................ 14

.. . . . . . . . . . . . . . 15

................ 15

................ 16

................ 17

................ 18

... . . . . . . .......19

... . . . . . . . . . . . . . 20

... . . . . . . . . . . . . . 21

................ 2 3

... . . . . . . . . . . . . . 24

......... ....... 2 7

. .. ........ .. 7...

. ........ ....... 8

... . . . . . . . . . . . . .2 9

... . . . . ... . ... ... 30

iii

_ I I__

Table of Contents

·. . . . .

CO, N. . . . Ne.

CO, NO, C NeCO, NO, C2H2

14. CzH Z ............15. NO .............

16. C 2 N2 . . . . . . . . . . .

17. H O . . . . . . . . .

18. HS . . . . . . . . . . . .

19. CH 4 .. ........

20. Benzene, Xe ........

21. Propylene . . . . . . . . . .

22. Ethylene, acetylene, water, me

krypton, nitrogen, argon

d. Electron attachment

1. Qa for H ..........2. P for CO. .........a3. NO .............

4. O Z .....

5. F..............

6. SF 6 . ............

e. Electron detachment

1. H in He, Ne, A, Kr and Xe

2. O in He and A ......

3. O in Ne . . . . . . . . . .

4. O in Kr and Xe .......

5. HinH, O in O 2 andN Z .

6. F in Ne, Kr, Xe . . . . . .

7. Cl in Ne ..........

8. Cl in He, A, Xe . . . .

9. C1 in Kr ..........

10. C1 in ClOin; O in HzO

11. S, Br, I in Ne . . . . . .

12. C, P, Li in Ne ......

f. Elastic collisions by ions, P

1. Cs+, K+, Li+ in He

2. Cs+, K+, Li+ in Ne

· ·

* ·

· ·

zthane

. ..

. . . .

* .

* . . .

. . .

. . .

. . .

. . .

. .

, carbon

. . . .

........ 31

· · · · ·........ .. 31

· ,,,........ . .32

· ,,,........ .. 34

........ .35

........ ......... 38

........ 38

,·,,........ .. 39

........ .39

· · · · · · ·........ .40

· · · · · ·........ .40

· · · · ·........ . .41

........ 42

........ . 43

· ,·,,........ 44

. .

. . . .

* .

* . . .

* . . .

. ..

* . . .

. ..

* . .

* ..

* ..

. .

dioxide,* . .

... . . . . . . . . . . . . . . . 45

. . . . . . . . . . . . . . . . . .45

... . . . . . . . . . . . . . . . 46

... . . . . . . . . . . . . . . . 46

. . . . . . . . . . . . . . . . . .47

... . . . . . . . . . . . . . . . 47

... . . . . . . . . . . . . . . . 48

... . . . . . . . . . . . . . . . 50

. ....... . . . . . . . . . 50

... . . . . . . . . . . . . . . . 51

... . . . . . . . . . . . . . . . 51

... . . . . . . . . . . . . . . . 52

... . . . . . . . . . . . . . . . 52

... . . . . . . . . . . . . . . . 53

. . .. . . . . . . . . . . .... 53

... . . . . . . . . . . . . . . . 54

... . . . . . . . . . . . . . . . 54

. . . . . . . . . . . . . . . . . .55

... . . . . . . . . ... 55

. . . . . . . . . . . . . . .... 56

iv

8. Zn . .

9. Cd . .

10. Hg . .

11. H2 . .

12. NO, 2

13. N2, O,

___ L __ �

. . . . .

. . .

. . . . .

. . . . .

. . . . .

. . . . .

Table of Contents

3. Cs + , Rb + , K+ , Na + , Li+ in

4. H+, H, H3 in H

5. H in H 2 .........

6. K+ inN 2 , 02, H2 .....

g. Inelastic collisions by ions

1. K+ in Ne, A, Kr, Xe . .

h. Charge transfer, Pt, Qt

1. H+ in H2 .........+

2. A+ in A; He+ in He ....

3. Hg+ in Hg. ........

4. Inelastic ion-atom collisions

5. H+ in Kr; H + in Xe; H + in A;

6. O+ in A; N+ in A; O+ in He.

7. O+ inN 2 .........

8. A1 and Li ions in H ....

9. Si and Be ions in H ....

10. C2+ in A, Ne, He .....

11. N2 + in A, Ne, He .....

12. A+ in A, Ne, He .....

13. O+ , CO N2 in A . . .

14. H+ in A; D+ in A, Kr, Xe.

15. O+ in Kr, Br+ , C+ in Xe .

16. N+ in Kr . . ......

17. O+ inHO, H 0+ in A

18. Summary . . . . . . .

A. ... . . . . 56

... . . . . 57

... . . . . 57

... . . . . 58

... . . . . . . . . . . . . . . . . 58

. . *

. . . . .

* . . . .

* * * * . *

C+ in Xe; Ne+ in

* . . . .

* . . .

. . . . .

. . . . .

. . . . .

.. . . .

. . * . .

. .. . .

* * . . .

* * * * .

. . . . .

. * . * .

.. . . .

A; Ne+ in He.

. * .

*

. . .

. . . .

. * .

* * . .

. . . .

. . .

. . .

* . .

..... ..59

..... ..59

..... 60

..... ...61

..... .62

..... ..62

..... .63

..... ..63

..... 64

..... ..65

..... ..65

..... 66

..... ...66

..... ..67

..... ..67

..... 68

..... ..68

..... 69

i. Photoabsorption

1. A, Ne and He.

2. K .

3. H Z

4. N 2

5. 02.

6. 03.

7. CO.

8. CO2.

9. NO.

10. N .0 .

11. C 2 H2 . . .

12. HO . . . .

13. CH 4 . . .

.. . . . . . .. . . . . . . . . . . . . 70

. . . . . . . . . . . . . .. . . . . 71

· . . ............ ......... 71

... . . . . . . . . . . . . . . . . . . . . . . 72

. . . . . . . . . . . . ... . . . 72

. . . . . . . . . . . ... . .o.. . ... . . . . . . 73

. . . . . . . . .. . . . . . . . . . . . . . 74

. . . . . . . . . . . .. . 75

... . . . . . . . . . . . . . . . . . . . . . . 76

.. . . . ..................... 77

... . . .. . . .. . . . . . . . . . . . .. . 78

..... ...... . . . . . . . . . .... 79

V

_ _

. . . . . .

. .. . . . . .

. . . . .

. .. . . . . .

Table of Contents

. . . . . . . . . . . . . . . . ..80

15. CH 4 .............................. 81

III. Surface Phenomena .......................... . 82

a. Secondary emission, yi

1. Li+, K+, Rb+ onA1 . . . . . . . . . . . . . . . . . . . . . . . 82

2. He+ , Ne+ , A+ on Ni. ...................... 83

3. Angle of incidence He+ on Ni .................. . 84

4. K + on Al, Ni, Mo .................... . 84

5. He He++, He 2 on Mo ... 85

6. He++, Ne++ A++ Kr, Xe++ on Mo ............. 86

7. He He ,He on Ta .................... 86

8. A+ on H N, 0-treated Ta . 87

9. N2 NonN2 -covered Ta; O, 0+ on 0 2 -covered Ta 87

10. He Ne A Kr Xe on W.88

11. A+ on H2, N2 , O-treated Pt 90+ +2 2 +

12. H2 H+ on H -covered Pt; N2+ N' on NZ-covered Pt;

°2' 0+ on O0-covered Pt.9113. H + + + on A13. H +, Na on Cu; K onAl; Li onAl; Rb onAl;

H+ on Cu, Al, Au; H+ on Ni. . . .

14. A + on Cs-Ag -O .

b. Effective secondary emission, y

1. Ne + , A+ in Ne, A+ , Kr+ , Xe+ onCu.

2. A+ on Na, Ba, Mg, Ni, Pt, Cu, Fe

3. Ne+ , A, Kr + on Mo and A+ on BaO .

4. Hg on Fe .............

5. H2 on Al .............

6. H2 on Ni .............

7. N2 on Pt, Na, Hg .........

8. Benzene, toluene, cyclohexane on Al

c. Ion conversions

1. H+ to H- on Ni .........

2. N+ to N- on Ni ..........

3. 0+ to O, O0+ to 02 on Ni . . . .

............... 91

............... 92

......... 92

. . . . . . . . . 93

......... .94

......... 94

......... .94

......... .95

. ...... 95

......... 96

............... 96

............... 96

............... 97

4. Positive carbon dioxide ions to negative carbon dioxide

ions on Ni ...................

d. Electron emission from electron bombardment

1. From Cu, Ag, Mg, Ba. ..............

e. Photoelectric emission

1. Work Functions ..................

....... 97

....... 98

....... .99

vi

14. NH3 .............

--- -- - I

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

Table of Contents

2. Yields from Al, Cd, Zn. . .

3. Yields from Ta, Mo, W, Pd.

IV. Motions of Electrons and Ions ....

a. Drift velocity of electrons

1. He ............

2. Ne ............

3. A.............

4. A in N z.

5. H Z.

6. D2 .

7. N 2 .

8. 0 2 .

9. Air ............

10. C12, Br 2 , I2 .

11. N 0. . . . . . . . . . . .

12. NH 3 . ...........

13. NH3, H20, HC1, C5H12 .

14. NO, CO, NO, CO . . .

b. Mean energies of electrons

1. He ............

2. A, Ne ...........

3. H2 ............

4. H and D 2 . . . . .

5. Br 2 , C12, I .

6. N2, 02, Air ........

7. CO 2 , NO, NO, CO. ....

8. NH 3 , H2O, HC1, C 5H1 . .

c. Drift velocities of ions

1. He+ in He; Ne + in Ne; A+ in A

2. He+ and He+ in He.23. Ne+ and Ne+ in Ne .....24. A+ and A+ in A.......

5. Kr+ in Kr; Xe+ in Xe ....

6. Kr 2 , Kr + in Kr.......

7. Xe2 , Xe + in Xe. . . . ..

8. Hg+ in He .........

9. Hg+ in Ne .........

10. Hg + in A .

11. N, NinN 2 . . . . . . .

. . . . . ......... 102

... . . . . . . . . . . . 103

... . . . . . . . . . . . 104

... . . . . . . . . . . . . . . . 106

... . . . . . . . . . . . . . . . 106

... . . . . . . . . . . . . . . . 107

... . . . . . . . . . . . . . . . 107

.. 108

... . . . . . . . . . . . . . . . 108

... . . . . . . . . . . . . . . .1 0 9

... . . . . . . . . . . . . . . . 109

... . . . . . . . . . . . . . . . 110

... . . . . . . . . . . . . . . . 110

... . . . . . . . . . . . . . . . 111

... . . . . . . . . . . . . . . . 112

... . . . . . . . . . . . . . . . 112

... . . . . . . . . . . . . . . . 113

... . . . . . . . . . . . . . . . 113

... . . . . . . . . . . . . . . . 114

... . . . . . . . . . . . . . . . 114

... . . . . . . . . . . . . . . . 115

... . . . . . . . . . . . . . . . 115

... . . . . . . . . . . . . . . . 116

. . . . . . . . . . . . . . . 117

... . . . . . . . . . . . . . . . 117

... . . . . . . . . . . . . . . 118

... . . . . . . . . . . . . . . 119

................. 1 20

... . . . . . . . . . . . . . . 121

... . . . . . . . . . . . . . . 122

.................. 122

... . . . . . . . . . . . . .. 1 2 3

... . . . . . . . . . . . . . . 123

... . . . . . . . . . . . . . . 124

... . . . . . . . . . . . . . . 124

. . . . . . . . ..... .. .125

vii

_ __

. . .

.

L

Table of Contents

+ 312. O2inO2 ...........13. ° 3 . . .0 0 .14. CO+ in CO .......................

15. Ions in He, H, Ne, A, Kr, Xe .............

16. All ions in N . . . . . . . . . . . . . . . .

17. Na+ in He, Ce+ in He, N in N as a function of temperature2 18. Water vapor clustering ............

d. Diffusion coefficients

1. Ambipolar . .................

V. Production and Decay of Ionization ...........

a. Electron ionization

1. Constants A and B..............

2. VO in i = i exp[h(V - V) ] . . . . .

3. Ionization per centimeter for He, Ne, A, Kr, Xe

4. Ionization per centimeter for N2 . . . . . . . .

5. Ionization per centimeter for 02 ........

6. Ionization per centimeter for Air, N, H2....

7. Ionization per centimeter for H, D Z ......

8. Ionization per centimeter for Hg ........

9. Ionization per centimeter for CO2 .... . .

10. Ionization per centimeter for H2 O, C H5OH.

11. Ionization per centimeter for HC1, CO2 .

12. Ionization per centimeter for SF 6 .

13. Ionization per centimeter for CC1zF2, CF3CF 5 .

... . 126

.... 126

... . 127

.... 127

... . 128

. . . 129

......... ...130

......... ........131

......... 132

......... .133

......... ........134

......... 135

......... 137

........ 137

......... 138

......... ........139

......... ........139

......... ........140

........ 141

......... ........142

......... ........143

........ 143

14. Ionization per centimeter for Air, C2H5C1, C5H12, C2H5Br,

SF6 , CHC1 3 , CC14 . . . . . . . . . . . . . . . . . .15. Ethyl alcohol. .....................

16. Ionization per centimeter for cyclohexane, toluene, benzene

17. Ionization per volt for Ne, A, He, Kr, Xe, Air ......

18. Ionization per volt for A-Ne mixtures .........

19. Ionization per volt for H2 .. . . . . . . .

b. Electron attachment

1. NO..........................

2. O2 .............

3. Air ..........................

4. Freon, CF3SF 5 ....................

5. HC1..........................

6. C12, Br2,12. .....................

7. HZO .. .

.... 144

.... 145

.... 145

... . 146

... . 147

... . 148

... . 149

... . 149

... . 150

... . 150

... . 151

... . 151

... . 153

viii

_ �

Table of Contents

8. H z S. .........

9. NO. .........

10. SO2 . . . . . . . . . .

11. NH 3 ..........

1Z. N2O in A, N 2 , and N20.

13. A+NH3; He + NH3; NH3;

c. Electron-ion recombination

1. Radiative ......

2. Dissociative . . . . .

3. Three-body ......

d. Ion recombination

1. Air ..........

2. O0 ..........

VI. Breakdown. ..........

a. Direct current

1. SO 2 , NO, CO 2 , Air, H2 .

2. A...........

3. H2 ..........

4. N2 ..........

5. Air ..........

b. Alternating current

1. R-F, Ne........

Z. R-F, H2 ........

3. R-F, N2 . .......

4. Low-pressure, R-F, H2

5. U.H.F., A, H2 , He, Ne,

c. Time lags

1. Low overvoltage ....

2. High overvoltage ....

VII. Electron Energies .......

a. Atoms

1. Ne ..........

2. A...........

3. He ..........

4. H 2 ..........

b. Temperature

. . . .

N + NH3.

... . . . . . . . . . . . . 153

............... 154

............... .. 154

... . . . . . . . . . . . . 155

............... 155

... . . . . . . . . . . . . 156

... . . . . . . . . . . . . . . . . . 1 5 7

... . . . . . . . . . . . . . . . . . 1 5 8

... . . . . . . . . . . . . . . . . . 1 5 8

... . . . . . . . . . . . . . . . . . 1 5 9

... . . . . . . . . . . . . . . . . . 1 6 0

... . . . . . . . . . . . . . . . . . 1 6 1

... . . . . . . . . . . . . . . . . . 1 6 2

... . . . . . . . . . . . . . . . . . 1 6 3

... . . . . . . . . . . . . . . . . . 1 6 4

... . . . . . . . . . . . . . . . . . 1 6 5

... . . . . . . . . . . . . . . . . . 1 6 6

* . .

* . .

* . .

* . .

Air .

1. Electron temperature in Hg arc

VIII. Cathode Phenomena. .........

a. Cathode fall

... . . . . . . . . . . . . . . 167

... . . . . . . . . . . . . . . 167

... . . . . . . . . . . . . . . 168

... . . . . . . . . . . . . . . 168

... . . . . . . . . . . . . . . 169

... . . . . . . . . . . . . . . 170

... . . . . . . . . . . . . . . 170

... . . . . . . . . . . . . . . 171

... . . . . . . . . . . . . . . 172

................ .172

. . . . . . . . . . . . . . .... 173

. . . .. . . . . . . . . . ... 173

... . . . . . . . . . . . . . . 174

... . . . . . . . . . . . . . . 175

ix

- _T1

Table of Contents

1. Voltage (various cathodes and gases) . .

2. Thickness (various cathodes and gases).

... . . . . . . . . . . 176

............. 177

3. Thickness against voltage ................... 177

4. Current density ...................... . 178

b. Back diffusion

1. Inert gases .......................... 179

2. Molecular gases . . . . . . . . . . . . . . . . . . ..... 179

c. Sputtering

Cu, Fe

Ge, C.

Ni, Hf.

Ag, Ti

Cr, Si.

Au, Al

Ir, Nb.

Th, Mo

Re, W.

Pd, Co

Pt, V.

W. . .

Rh, Zr

U, Ta.

I

. . . ........................... 180

............................ . 180

............................ . 182

............................ . 182

............................ . 183

............................ . 184

............................ . 184

............................ . 185

............................ . 185

............................ . 186

............................ . 186

............................ . 187

............................ . 187

............................ . 188

x

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

'1 I

_ I ____ __ ___ __ ___ ·

__I� __ _____I

I. POTENTIAL ENERGIES

I(a). Table of excitation and ionization energies of atoms in electron volts obtained from

spectra by means of the conversion factor, VX = hc/e = 1.2398 X 10 - 4 volt-cm.

R

Element

HHeLiBeBCNOFNe

Vm

19.80

1.262.381.97

16.62

Na

Mg

AlSiPSC1AKCaScTiVCrMnFeCoNiCuZnGaGeAs

SeBrKrRbSrYZrNbMo

2. 709

0.780.91

11.55

1.8801.430.810.260.942.110.850.430.421.384.00

0.881.31

9.91

1.775

0.52

1.34

Vres

10. 19821.21

1.855. 284.967.48

10.39.15

12.716.85

2.1

2.712

3. 144.936.956. 528.92

11.611.611.8861.981.972. 032.892.282.402.923.313.784.033.074.656.28

6. 107.86

10. 021.561.7981.3051.832.973.18

Vil

13. 59524. 580

5. 3909. 3208. 296

11.26414.5413. 61417.41821. 559

Vi 2

54.40075. 6218.2125. 1524.37629. 6035. 1534.9841.07

5. 138 47.29

7. 644 15.03

5. 9848. 149

10.5510. 35713.0115. 755

4. 3396. 1116. 566. 836.746. 7647.4327.907.867. 6337. 7249.3916. 007.889.81

9.7511.8413. 996

4. 1765. 6926.386. 8356.887. 131

18.8216.3419. 6523.423.8027.631.8111.8712.8913.5714.216.4915. 6416. 1817.0518. 1520. 2917.9620.5115.9318. 7+0. 121.521. 624.5627.5611.02612.2312.9213.9015.72

Vi3

122.42153.8537.9247.8647. 42654.9362. 6563.5±0. 171.8+0. 178.2+0. 128.4433.4630. 1634.839.940. 9045. 951.2124. 7528. 1429. 73133. 6930. 6433.4936. 1636.8339.7030. 7034.2128. 3

32. 035.936. 94043. 620. 524.828. 129.6

(continued on next page)

1

AtomicNumber

12345678910

11

12

131415161718192021222324252627282930313233

343536373839404142

Vm

0.810.410.81

3. 73

1.071.05

1.31

8.32

1.13

0.37

0.37

Vres

3.163.364.483.573.803.024.335.35

5.49

8.451.39

1.57

1.84

2.19

2.3

2.35

0.102 3.741.14 4.634.667 4.886

3.282.66 4.381.42 4.04

Vil

7.237.367.468.337. 5748.9915. 7857.3328.64

9.01

10.4412. 1273.893

Vi 2

14.8716. 6015.9219.4221.4816. 90418.8614.616.7+0. 518.8+0.519.021.225. 1

5.810 10.00

5.61(6.91)(5. 76)(6.31)

5.65.676.16

(6.74)(6.82)

6.26. 155.57.7

7.98

7.87

8.7

9.2

8.969.223

10.4346. 1067.4157.2878.2

+0.49.2

±0.4

11.4312.3

(11.2)11.24

(12)

12. 1014.714.916.2+0. 517.7+0. 516. 6+0.517+117.0±0.318.5420.518. 75120.4215.0319.319.4+1.720. 1+1.7

(continued on next page)

2

AtomicNumber

434445464748495051

52

535455

56

Element

TcRuRhPdAgCdInSnSb

Te

IXeCs

Ba

5758596061626364656667686970717273

74

75

LaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTa

W

Vi3

31.930.332.8

36. 1044.528.030.724.8

31

3332.134.6±0. 737+119.1719.5

34. 229.831.9325.627.3+0.829.3±0.9

Re

76 Os

77 Ir

78798081828384

PtAuHgT1PbBiPo

85 At

____I _I

Atomic Element V m V Vi Viz Vi3Number

86 Rn 6. 77 8.41 10. 745 21.4 29.4+1. 8 +1.0

87 Fr 3.98 22. 5 33.5+0. 10 +1. 8 +1. 5

88 Ra 5. 277 10. 14489 Ac 6.89 11. 5

+0. 6 +0.490 Th 11. 5 20.0

+1.091 Pa92 U 4

The resonant level V r is the lowest excited level from which electric dipole radia-

tion can take place. If there is an excited level, not part of the ground state multiplet,

which is lower than V r, it is a metastable level Vm .

[The data from columns 5, 6, and 7 are taken from W. Finkelnburg, W. Humbach,

Naturwiss. 42, hft. 2, 36-37 (1955).]

3

__

I(b). Excitation and Ionization for Molecules

Molecule

Br 2

BrCl

CH20

CH 3 Br

CH 3 C1

CH 3 I

CH 4

CN

CO

CO2

CSCs

CS2

C 2 H2

C 2 H4

C 2 H 6

C 6 H 6

C7H8

CH3I

C 2 H 5 Br

C2 H 5 N

C 2H5OH

CH 3 COCH 3

Vr Vil

12.8

12.9

11.3

10. 0

10. 7

9. 1

14. 5

14

6.0 14.1

10.0 14.4

10. 6

10.4

11.6

12. 2

12. 8

9. 6

8. 5

10. 1

10.2

9. 8

11.3

10. 1

Molecule

C12

F 2

H2

HBr

HCN

HC1

HF

HI

H20

H2S

I2

IBr

IC1

N2

NH 3

NO

NO 2

N20

02

S2

SO2

V r Vi

13.2

17.8

11.5 15.6

13.2

14. 8

13.8

17.7

12. 8

7.6 12.6

10.4

2.3 9.7

11.6

11.9

6.1 15.5

11.2

5.4 9.5

11.0

12.9

7.9 12.5

10. 7

13.1

4

___I_ __ __ _ __ __

I(c). Electron Affinities

Atom Electron Volts

H 0.76

He -0.53

Li 0.34

C 1.37

N 0.04

0 3.80

F 3.94

Ne -1.20

Na 0.08

Mg -0.87

Al -0. 16

S 2.06

C1 3.70

A -1.0

Br 3. 54

I 3.22

Hg 1.79

From L. B. Loeb, "Fundamental Processes of Electrical Dischargesin Gases" (John Wiley & Sons, Inc., New York, 1939), p. 297.

5

II. COLLISION PROBABILITIES

The probability of collision Pc is defined as the fraction of particles scattered out of

a collimated beam per centimeter path per millimeter pressure at 0°C. Similarly the

"probability" of any event occurring on collision, such as excitation Px or ionization Pi,

is the fraction of particles suffering that event per centimeter path and millimeter pres-

sure. The probability P is related to the cross section q by

P = Lq/760 cm- (mm Hg)

where L is Loschmidt's number, or

P = 3. 5357 q

where q is in square angstrom units. The mean free path I is given by

= /po P cm

and the mean free time T by

1/T = v/ = 5.93107 X 107 u 1 /2 p P sec-1

Here u = mv /2e is the energy in electron volts, and p = 273. 16 p/T is the "reduced"

pressure in millimeters of mercury. p does not express a pressure, but a concentra-

tion

N/V = 3.5357 X 1016 Po molecules/cm 3

2 2Cross sections are sometimes given in units of r a 0. 87981 A , and energies in

Hartree units, k= V/13.605.

If q(0) is the differential cross section for elastic scattering into unit solid angle at

an angle to the incident direction,

qc = f q(0) r sin 0 dO

A more important quantity is the cross section for momentum transfer.

qm = f q(0) (1 - cos 0) 2 sin 0 dO

In general, qm < qc; experimental values of Pc should be "corrected" to Pm in all gas

discharge applications.

6

60

50

4030

20

10

IOTS

II al. "Probability" of collision in Hz , He.

B. Brode, Revs. Modern Phys. 5, 257 (1933)V. Phelps, O. T. Fundingsland, S. C. Brown, Phys. Rev. 84, 559 (1951)J. Varnerin, Jr., Phys. Rev. 84, 563 (1951)Gould, S. C. Brown, Phys. Rev. 95, 897 (1954)

P.

DU

25

03 4 5 6 7

VOLTS

II aZ. "Probability" of collision in atomic hydrogen.

A. A. Kruithof, L. S. Ornstein, PhysicaZ, 611 (1935)

VELOCITY (CM/SEC)

20

II aZ. Collision cross section for electrons indeuterium and hydrogen.

*All references under figures indicate the sources of the experimental data.

7

R.A.L.L.

- --- - -- --- L'

or

PC

A AUU

2000

1800

1600

1400

1200

1000

800

600

400

200

0 2 3 4 5 6 7 8 9 10,RVOLTS

II a3. "Probability" of collision in the alkali metals.R. B. Brode, Revs. Modern Phys. 5, 257 (1933)

P

II a4. "Probability" of collision in Hg, Zn, Cd.R. B. Brode, Revs. Modern Phys. 5, 257 (1933)H. Margenau, F. P. Adler, Phys. Rev. 79, 970 (1950)

8

__

O Oe

P

I/V-VOLTS

II a5. "Probability" of collision in thallium.

R. B. Brode, Phys. Rev. 37, 570 (1931)

) 2 34 5

1/voLTs6 7 8 9 10

II a6. "Probability" of collision in Ne, A, Kr, Xe.

R. B. Brode, Revs. Modern Phys. 5, 257 (1933)

9

150

140

130

120

110

I00

90

80

Pc 70

60

50

40

30

20

I0

0

A

I \

- ..

0

13C

12C

IC

10C

9C

8C

7C

6C

PC 5

4C

3C

2C

I0

O 2 3 4 5 6 7 8 9 I

/VOLTS

II a7. "Probability" of collision in 0 2 , N2 , CO.

R. B. Brode, Revs. Modern Phys. 5, 257 (1933)

PC

90

80

70

60 1 ; : ; 50 '

40 30 "

20

10

0 2 3 4 5 6 7 8 9 I(

VOLTS

0

II a8. "Probability" of collision in CO 2 , N 2 0.

R. B. Brode, Revs. Modern Phys. 5, 257 (1933)

10

'" - I---

3o

PC

40

20

00

80

40

20

n"0 I 2 4 5 6 73

VOTS

II a9. "Probability" of collision in NH 3 , H20, HC1.

E. Briiche, Ann. Physik 1, 93 (1929); 83, 1065 (1927)

160

150

140

130

120

110

100

90

Pc 80

70

60

50

40

30

20

10

u I Z 6 4 5 6 71356

8 10

II alO. "Probability" of collision in CH 4, CzH 6, C3H8 .

R. B. Brode, Revs. Modern Phys. 5, 257 (1933)

11

OH

0H6

OH4 _Q/L\

- --

I

9

P

-0 LTRq

II all. "Probability" of collision in HCN, CH 2 .

F. Schmieder, Z. Elektrochem. 36, 700 (1930)

P,

VOLTS

II a2. "Probability" of collision in CC14.

W. Holst, J. Holtsmark, Kgl. Norske Videnskab. Selskab. 4, 89 (1931)

12

·I

MbU- _ _

240

220

200

180 - I

CH 6160

140 -/ _

120

100 C2H4

80

60 _6H

40 -

20-

n0 1 2 3 4 5

v VOLTS

II a13. "Probability"

W. Hoist, J.

of collisions in C 6 H 6 , C 2 H 4 .

Holtsmark, Kgl. Norske Videnskab.

pI

Selskab. 4, 89 (1931)

II a14. "Probability" of collision in CH4 , CZH 6 , C 3 H8 , C 4 H10.

E. Briiche, Ann. Physik 4, 387 (1930)

13

P

- -- ----------

oan-LUU

180

160

140

120

PC100

VU

r

0 2 3 4 5

/VOLTS

II a15. "Probability" of collision in CHC13, CH2Cl, CH3C1.

W. Holst, J. Holtsmark, Kgl. Norske Videnskab. Selskab. 4, 89 (1931)

Pc

0 I 2 3 4 5 6 7

,/VOLTsS

II a16 . "Probability" of collision in CH3 OH, CH 3 F, CH 3 NH 2 .

F. Schmieder, Z. Elektrochem. 36, 700 (1930)

14

CH C13 -3

CH2C12

CHCI\3

/

1-1

� 1- -

I I-

- - -

Ij

/7\,A-t I 1-111'�

-I I'

N,

=roU \ _

CRf1

_fl f T'-t

\ _J .J)

^^

180

160

140

120

PC

100

80

60

40

20

nA I 7

JVOLTS

II a17. "Probability" of collision in n - C 3 H 7OH,

F. Schmieder, Z. Elektrochem. 36, 700

220

200

,-f

160

140

p120

100

80

60

20

Vo a

VOLTS

C2 H5OH, CH 3OH, H0.

(1930)

7

II a18. "Probability" of collision in (CH 3 ) 3CH, (CH 3) 3 N.

F. Schmieder, Z. Elektrochem. 36, 700 (1930)

15

n-C3H70OH

OH/

/~CH30H

H20

X:

i \IIIIIIII

,,,

rUn \ 3 I '

/(CH 3 ) 3CH

I l -- -- --

I

I

I

I--

so I ;L .... V

� _� � � II

·_ I_

0nofl *vv

I r \C2H§I \- -I

\J r 1 1I

I

I.-3) 13"U

I --

/

.

2 IOF

ICoD 6

I

I

Pc

VO"ProbabiLTsion in CH5OH, (CH3)O.

II a19. "Probability" of collision in CH5700H, (C19H3 )2 0F. Schmieder, Z. Elektrochem. 36, 700 (1930)

16

I

I

180

160

140

120

PC

100

80

60

40

20

r

) 1 2 3 5 6 7

/VOLTS

II aZO. "Probability" of collision in (CH 3 )2 0, (CH 3 )2 NH, (CH 3 )2 CH 2 .

F. Schmieder, Z. Elektrochem. 36, 700 (1930)

17

In\

XII

/;

- (CH 3 ) 2 0

---- (CH 3) 2 NH

(CH3) 2 CH 2

.r . .

. �CI C---- --- .-

. .. _ _

I

I "I N-1 "Z,

1-1I--

. I

_%-/ IIJl

220

200

180

160

140C

120 ' _

100

80 - - BUTANEx x x ISOBUTANE

60

40 7

20

I 2 3 4 5 6 7

./V OLTS

II a2 1. "Probability" of collision in butane,

F. Schmieder, Z. Elektrochem. 36,

isobutane.

700 (1930)

18

P

2

.CAV

180

160

40 _ I

11 \120 - f

100

/I80 t_

n- PENTANE60

--- x--- TETRAMETHYLMETHANE

40

20

n1 2 3 4 5 6 7

II a22Z. "Probability" of collision in n-pentane, tetramethyl methane.

F. Schmieder, Z. Elektrochem. 36, 700 (1930)

19

o)nC-

vO0

it"2

I13~ H + HI 2 H+H 4

NUCLEAR SEPARATION (ANGSTROMS)211

I I~u H+H2 3 4

NUCLEAR SEPARATION (ANGSTROMS)

II bl. Potential energy curves for electronic stateswithin 20 ev of the ground state.

of H and H lying

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 230

1 50

zo 40

00

WLu 30CDW )z

20z0I-0

Ir 10W

z

01 2 3 4

NUCLEAR SEPARATIONS (ANGSTROMS)

II bl. Potential energy curves for higher energy states of H2 .

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 231

20

20

tr

o> 16zo

w 12

0CDzU

z0

0

I-z

8

4

0

--- --·- --- -- --

()

o-J0z0rr

oC)LLJ

I

>-

_J

I-zLLI

0a_

NUCLEAR SEPARATION (A)

II bZ. Potential energy curves for the 02 molecule.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 257

21

_ _

I

I-0

z0

IJ-LK

zo0

LlJ

LLI--Q)

- , 1. ' 2 I 1.5 2 2.5NUCLEAR SEPARATION (A)

II bZ. Two possible sets of potential energy curves for 02.H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 263

22

II_ _

I

0

C-

(AU)o13

VOLTS

II cl. Q12 - cross section for electron collision exciting 63P Z from 6 3 P 1

in mercury; Q 2 1-- cross section for collision of second kind with

electrons returning 63P 2 to 6 3 P 1 in mercury.

C. Kenty, J. Appl. Phys. 21, 1309 (1950)

5x

6 7 8

VOLTS

9

II cl. Calculated cross sections for excitations of 73S from 61Slevel in mercury. 0

C. Kenty, J. Appl. Phys. 21, 1309 (1950)

23

I _ _ I

5 x

II cl. Excitation

C. Kenty,

VOLTS

function for 63 P states of mercury.

J. Appl. Phys. 21, 1309 (1950)

P,I

/

Ne/

/ -

/ / - - --i

/ I

/ / - Px P./

3 10 12 14 16 18 20 22 24 26 2~VOLTS

_/ / HN~~~~e/

//

8 10 12 14 16 18VOLTS

20 22 24 26 28

II c2. "Probability" of excitation

M. J. Druyvesteyn, F. M

and ionization in He, H2 , Ne, A.

Penning, Revs. Modern Phys. 12,

24

z0o

00

0

J

zLLO

F-J

a030Q_

2.0

1.8

1.6

1.4

1.21.0

0.80.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

87 (1940)

I --

6

iQ I I I l I I I I I I I I I I I I I I I I

14

I12

Il~~~ 0 ~

8

6

4

223S 2S 23P

19.5 20.0 205 21.0 21.5 22.0ELECTRON ENERGY (VOLTS)

II cZ. Excitation of metastable levels in He.

G. J. Schulz, R. E. Fox, Phys. Rev. 106, 1179 (1957)

25

H-

z

n

H-zLJ

C-)

____

Ilo-

P

O10

ELECTRON ENERGY (VOLTS)

II c2. "Probability" of ionization in He, Ne.

P. T. Smith, Phys. Rev. 36, 1293 (1930)

ELECTRON ENERGY (VOLTS)

II c2. "Probability" of ionization in neon.

W. Bleakney, Phys. Rev. 36, 1303 (1930)

26

A,

)O

I I

10.0 x

a

9.0 /He +

8.0 /

7.0

6.0 /

5.0 -__ /.

4.0__

3D

2.0 24'58_

C' _____ _____ _____ _____ _____~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0

ELECTRON ENERGY (ELECTRON VOLTS)

II c3. Ionization cross section in He by electron impact.

R. E. Fox, Research Report 60-94439-4-R2, WestinghouseElectric Corporation, Aug. 15, 1956

16.0x I1

j-

N05

I'.U

120

10.0

8.0

6.0

40

2.0

020.0 22.0 24.0 26.0 28.0 30.0 32.0

ELECTRON ENERGY (ELECTRON VOLTS)

II c4. Ionization cross section for neon.

R. E. Fox, Research Report 60-94439-4-RZ,Electric Corporation, Aug. 15, 1956

Westinghouse

27

NEON

21.56

AF

I-OAf"

S I

f1

L

7-

-IA

18.0,

0

(j

ELECTRON ENERGY (ELECTRON VOLTS)

II c5. Ionization cross section for argon.

R. E. Fox, Research Report 60-94439-4-RZ, WestinghouseElectric Corporation, Aug. 15, 1956

2waa

2C

ELECTRON ENERGY (VOLTS)

II c5. "Probability" of ionization in argon.

R. E. Fox, W. M. Hickam, T. Kjeldaas, D. J. Grove,Phys. Rev. 84, 859 (1951)

28

ELECTRON ENERGY (VOLTS)

II c5. "Probability" of ionization in argon.

W. Bleakney, Phys. Rev. 36, 1303 (1930)

T § /

14 A. 4

KRYPTON

I0

8

6

4

2

14.00 14.10 14.20 14.30 14.40

ELECTRON ENERGY (VOLTS)

II c6. Relative ionization probability for ionization to the 2P 3 /2 state in krypton.

R. E. Fox, W. M. Hickam, T. Kjeldaas, Phys. Rev. 89, 555 (1953)

29

-I - --

An

Mo

ZWI-

0

Zo

II c6, Relative ionization

R. E. Fox, W. M.

I-zw

ozo

14.0 14.5 15.0 15.5 16.0 16.5

ELECTRON ENERGY (VOLTS)

probability for ionization to the 2P1/ state in krypton.

Hickam, T. Kjeldaas, Phys. Rev. 89, 555 (1953)

11.5 12.0 12.5 13.0 13.5 14.0ELECTRON ENERGY (VOLTS)

14.5

II c7. Relative ionization probability for ionization by electron impact in xenon.

R. E. Fox, W. M. Hickam, T. Kjeldaas, Phys. Rev. 89, 555 (1953)

30

U)

Zcc

t-z4I-4Z

i-WD

0z

0

4I.ELECTRON ACCELERATING 11. I. IVOLTAGE .

ELECTRON ACCELERATING VOLTAGE

II c8. "Probability" of ionization in zinc.

W. M. Hickam, Scientific Report 1819, Westinghouse ResearchLaboratory, March 31, 1954

ciZZ)z

E44-0

z

Z

9XM

0Z2

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5ELECTRON ACCELERATING VOLTAGE

13.0 13.5 14.0

II c9. "Probability" of ionization in cadmium.

W. M. Hickam, Scientific Report 1819, Westinghouse ResearchLaboratory, March 31, 1954

31

. .. ,,_____._

8

7 -

A6 Z/qR In- Pn6 i 11 1

C

Z - 0 v I I/ I

B

7

Cd P

5

11~~

5.- SO9.0 .4 .8 IQZ

7

10.5 11.0 11.5

ELECTRON ENERGY (VOLTS)

II c10. "Probability" of ionization in mercury.

W. B. Nottingham, Phys. Rev. 55, 203 (1939)

a'-

9-

8 -7

6!

I

o I/I 'L

2

10 11 12ELECTRON

13 14 15

ENERGY (VOLTS)

16

II c10. "Probability" of ionization in mercury.

W. B. Nottingham, Phys. Rev. 55, 203 (1939)

32

ii

2018I I 20 -- - - -

6-

10 - -

o~~~, II --86 {j-I 4

2

2- - - -0 10 20 30 40 50 60 70

ELECTRON ENERGY (VOLTS)

100

II c lO. "Probability" of ionization in mercury.

W. B. Nottingham, Phys. Rev. 55, 203 (1939)

z

It2S

0McoZZWC,xZ)0

10.4 10.6 10.8 11.0 11.2 11.4 11.6ELECTRON ACCELERATING VOLTAGE

11.8 12.0 12.2

II clO. "Probability" of ionization in mercury.

W. M. Hickam, Scientific Report 1819,Laboratory, March 31, 1954

Westinghouse Research

33

HgD

3 /

E1 I I _ o_ _ /~~~~~~O

_ ---------

a0

80 90

'0

ELECTRON ENERGY (VOLTS)

II cO. "Probability" of ionization in mercury.

W. Bleakney, Phys. Rev. 35, 139 (1930)

aW

0(O

00(a0U

iO

ELECTRON ENERGY (E V)

II c 1 . Ionization cross sections of hydrogen on electron impact.

34

I

aL

D

>.-6nzrrcr

Fr

I-zw0:frZ

rC-)z0

4ELECTRON ENERGY (VOLTS)

II c1Z. "Probability" of ionization for electrons in NO, 02.

H. D. Hagstrum, Revs. Modern Phys. 23, 185 (1951)

35

_ _

25 x 10

2

a I

15 16 17 18 19 20 21 22 23 24

ELECTRON ENERGY(ELECTRON VOLTS)

II c12. Ionization cross section for nitrogen.

R. E. Fox, Research Report 60-94439-4-R2, WestinghouseElectric Corporation, Aug. 15, 1956

36

1

-- -l

50x 10'

4(

5(

O

C0._

13 14 15 16 17 18 19 20 21 22ELECTRON ENERGY(ELECTRON VOLTS)

II c12. Ionization cross section for carbon monoxide.

R. E. Fox, Research Report 60-94439-4-R2, WestinghouseElectric Corporation, Aug. 15, 1956

37

8

CO+ B2 +19 . 67

3/

/A2=I6.533

'X2 =+14.0 I

0 _ __ _

- -- I L

2(

IK

I

150 300 450 600 750

ENERGY OF ELECTRONS (VOLTS)

II c13. "Probability" of ionization in N,

J. T. Tate, P. T. Smith, Phys.

coz

5-Z

I-zxDU0z0

0 z,Rev.

CO,

39,NO, CH2z270 (1932)

ELECTRON ENERGY (VOLTS)

II c14. "Probability" of ionization in acetylene.

J. T. Tate, P. T. Smith, A. L. Vaughan, Phys. Rev. 48, 525 (1935)

38

TPi

o

I

IrS

)0

jiZ

-

m

zw

DCL

zo29

ELECTRON ENERGY(VOLTS)

II c15. "Probability" of ionization in nitric oxide, NO.

J. T. Tate, P. T. Smith, A. L. Vaughan,

F-'Hn

Phys. Rev. 48, 525 (1935)

ELECTRON ENERGY(VOLTS)

II c16. "Probability" of ionization in cyanogen, CN 2 .

J. T. Tate, P. T. Smith, A. L. Vaughan, Phys. Rev. 48, 525 (1935)

39

)O

en

D

-r

z

coI-)z0

Q

3

2

n11.0 12.0 13.0 14.0 15.0 16.0

ELECTRON ENERGY(VOLTS)

II c17. Ionization potentials of water.

W. C. Price, T. M. Sugden, Trans.

U)-zD

I-CC

x0Q~p-ZWcrrWoC)Z

17.0 18.0 19.0

Faraday Soc. 44, 108 (1948)

ELECTRON ENERGY (VOLTS)

II c18. Ionization potentials of hydrogen sulphide.

W. C. Price, T. M. Sugden, Trans. Faraday Soc.

.0

44, 108 (1948)

40

·a

U14 16 18 20 22 24 26

ELECTRON ENERGY (VOLTS)

II c19. "Probability" of ionization for CH 4 from methane.

C. A. McDowell, J. W. Warren, Faraday Soc. Discussions 10, 53 (1951)

ci-z

r4

m

z

0r

z

oZW

4

OH 4 OH 34 H2

I _

II 12 13 14 15 16 17

ELECTRON ENERGY (VOLTS)

II c19. "Probability" of ionization for CH4, CH3, and CH2 from methane.

C. A. McDowell, J. W. Warren, Faraday Soc. Discussions 10, 53 (1951)

41

on

()F-z

>-

ctor_

ZL.rr

Z)

00

Y 1u 11U I 1 1 13 Ito I I

ELECTRON ENERGY (VOLTS)

II c20. Ionization probability of benzene and xenon.

R. E. Fox, W. M Hickam, J. Chem. Phys. 2Z, 2059 (1954)

4Z

I

0)I-z

I-

>-

zW

rnCI--zZLUJWMMZ0

9.5 10.5 11.5 12.5 13.5 14.5ELECTRON ENERGY(VOLTS)

II c21. Ionization probability of propylene.

R. E. Fox, W. M. Hickam, J. Chem. Phys. 22, Z059 (1954)

43

I-

zZ

)-

a

zCnI-bi

0

UI-10 11 12 13 14 15 16 17

ELECTRON ENERGY (VOLTS)

II c22. Ionization efficiency of ethylene, acetylene, water, methane,carbon dioxide, krypton, nitrogen, and argon.

F. P. Lossing, A. W. Tickner, W. A. Bryce, J. Chem. Phys. 19,1254 (1951)

44

I

on.. ,- 24

0

o

"Du

120

80

40

O.1I 0.2 0.4 0.7 2 4 7 10

ELECTRON ENERGY (ev)

II dl. Cross sections for

H. S. W. Massey,(Clarendon Press,

radiative attachment of electrons

E. H. S. Burhop, Electronic andOxford, 1952), p. 335

20 40 70 100

by neutral hydrogen atoms.

Ionic Impact Phenomena

ELECTRON ENERGY IN VOLTS

II d2. "Probability" of formation of O- ions from carbon monoxideas a function of the energy of the impacting electrons.

H. D. Hagstrum, J. T. Tate, Phys. Rev. 59, 354 (1941)

45

/

1

"I

I - -

't..l 1(1 -LVV A

AN

.1 I -'YL-ant

---'" "y()(

I

I-zwaI-

zoz

w

4

zw

ELECTRON ENERGY IN VOLTS

II d3. "Probability" of formation of O ions from nitric oxide asa function of the energy of the impacting electrons.

H. D. Hagstrum, J. T. Tate, Phys. Rev. 59, 354 (1941)

2

2itCZ

C

zC

I.

2

0O

ELECTRON ENERGY IN VOLTS

II d4. "Probability of formation of O ions from oxygen.

H. D. Hagstrum, J. T. Tate, Phys. Rev. 59, 354 (1941)

46

()

Z Z

o r

Zm

4

ELECTRON ENERGY IN ELECTRON VOLTS

II d5. F ion current as a function of electron energy.

A. J. Ahearn, N. B. Hannay, J. Chem. Phys. 21,

5500 _

I-n I-

zw

r4

-m4CD

za-Z

za:

a:w0

oz0

' 1

o)

22

2

2500 -

.000

1500

1000

1n _1 _

o 5 10 15 20 25 30 35 40 4'

ELECTRON ENERGY IN ELECTRON VOLTS

II d6. SF 6 ion current as a function of electron energy.

A. J. Ahearn, N. B. Hannay, J. Chem. Phys. 21,

50

119 (1953)

47

119 (1953)

XII/

X 2500

X 250

X 2500

C

///

- -- -- --- - - - --- I -- --- ---

1 ,J I

----I

Il

I j Ilr __

/I

ii - - IJVV

n_V5

0

a:-

0 20 40

JVOLTS

60

II el. Atomic collision detachment cross sections of H in He,Ne, A, Kr, and Xe.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

40

O

3-

20

10

100 e'UU 300 +UU

VOLTS

II el. "Probabilities" of collision for H in He.

T. L. Bailey,1446 (1957)

C. J. May, E. E. Muschlitz, Jr., J. Chem. Phys. 26,

48

'I

TOTALi-,r-~-L-.l, L LtU I UII UL I AU MM Vl I

ELASTIC

·nrrl I··r�lT

, , _ _ . .

A

I

cr\

o0a

VOLTS

II e 1. "Probabilities" of collision for H in Ne.

T. L. Bailey, C. J. May, E. E. Muschlitz,1446 (1957)

0

Jr., J. Chem. Phys. 26,

VOLTS

II el. "Probabilities" of collision for H in A.

T. L. Bailey, C. J. May, E. E. Muschlitz, Jr., J. Chem. Phys. Z6,1446 (1957)

49

F

I

)o

)O

40

, 2020

0r

0 20 40

II e2. Atom collision detachment cross sections of O

J. B. Hasted, Proc. Roy. Soc. (London) A2 12,

o-

WIv

60

in He and A.

235 (1952)

1-V-OLTS

II e3. Atom collision detachment cross section of O in Ne.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

50

I

0o

+U

lo

_-

CL-

2

0 20 40 60

VO LTS

II e4. Atomic collision detachment cross sections of O in Kr and Xe.

J. B. Hasted, Proc. Roy. Soc. (London) AZ12, 235 (1952)

25 x I(

0

VOLTS

II e5. Detachment cross sections in oxygen, nitrogen, and hydrogen.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 349 (1956)

51

0- IN Kr

O- IN Xe

l_i�i

-------- .-- - -------

--

.,\4

.v

40

20

0 201VOLTS

40 60

II e6. Atom collision detachment cross sections of F- in Ne, Kr, and Xe.

J. B. Hasted, Proc. Roy. Soc. (London) AZ12, 235 (1952)

40r

0

a-2C

U 20 40 bU

/VOLTS

II e7. Atom collision detachment cross sections of C1 in Ne.

J. B. Hasted, Proc. Roy. Soc. (London) AZ12, 235 (1952)

52

_-- ~ F IN Xe

......_. ..... F - IN Kr

F IN Ne

CI- FROM:HCI

C12

.

J

�---

.

GI IN Ne

-O

-

VO LTS

II e8. Atomic collision detachment cross sections of C1 in He, A, and Xe.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

v

/VOLTS

II e9. Atomic collision detachment cross sections of C1 in Kr.

J. B. Hasted, Proc. Roy. Soc. (London) AZ12, 235 (1952)

53

_ _

0o

25x

cE

C-a

xlO '

JVOLTS

II elO. Detachment cross sections in chlorine, oxygen, and water.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 349 (1956)

A

0

0W-

VOLTS

II el . Atomic collision detachment cross sections of S-, Br-, and I- in neon.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

54

_�__1 ___

-w-

0 20 40

VOLTS

Cs-

60

II el2. Atom collision detachment cross sections of Li , C , and P in Ne.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

IHELIUM

K

Li+

3 4 5

/v~OLTS

II fl. "Probability" of collision for positive ions

C. Ramsauer, O. Beeck, Ann. Physik 87,

of Li, K, Cs in helium.

1 (1928)

55

180

160

140

120

P+ 100

80

60

40

20

0

1\��

-

NEON

---.--.-- Cs+I

Ki +===-Li +

1 2 3 4 5 6

I.Fs

II f2. "Probability"

C. Ramsauer,

P+

of collision for positive ions of Li, K,

, O. Beeck, Ann. Physik 87, 1 (1928)

Cs in neon.

VOLTS

II f3. "Probability" of collision for positive ions

C. Ramsauer, O. Beeck, Ann. Physik 87,

of Li, Na, K, Rb, Cs in argon.

1 (1928)

56

200

180

160

140

120

100

80

60

40

P+

20

0

3

140

120

80

60

40

20

0

II f4. Elastic scattering of low-velocity hydrogen ions in hydrogen.

J. H. Simons, C. M. Fontana, E. E. Muschlitz, Jr., S. R. Jackson,J. Chem. Phys. 11, 307 and 316 (1943)

_-

A/r

20

0 100 200 300 400

ENERGY (VOLTS)

II f5. Scattering cross sections of H in H2 .

E. E. Muschlitz, Jr., T. L. Bailey, J. H. Simons, J.1202 (1956)

Chem. Phys. 24,

57

N

TOTAL

ELASTIC

I NELASTIC

j

1·; 1-1', H.' '

Ir

�11�� ZZ::Z--7-

I I . :_ #s " " 4_ A A ..~~~~~~~~

---------

t--

I

CL

if a 1+ U 'YI lv

"'v II1

P+

I Z j 4

II f6. "Probability" of collision for positive ions of K in H z , 02, N2.

C. Ramsauer, O. Beeck, Ann. Physik 87, 1 (1928)

50 75 100 125

A/ x__x0_Kr

Xe(x 1)

N eCx00)

150 175 200 225 250

ION ENERGY (ELECTRON VOLTS)

II gl. Ionization cross sections of inert gases by K+ ions as a function ofion energy.

D. E. Moe, Phys. Rev. 104, 694 (1956)

58

3

2

r-0o

cf

0

---

5000 10,000

ENERGY (VOLTS)

II h. Charge-transfer cross section of H+

H. S. W. Massey, E. H. S. Burhop,(Clarendon Press, Oxford, 1952), p.

20

0a

in H2 .

Electronic and Ionic Impact Phenomena526

VOLTS

II hZ. Charge-transfer cross sections of A+ in A, He + in He as a function of energy.

J. B. Hasted, Proc. Roy. Soc. (London) AZ05, 421 (1951)

59

C)I-

z

z

0

H' in H2

16

14 (n_

SMITH I ARTELS12

______________KEEN -10

I~~~~~

GOLDMANN

6

MEYER4 _ _ _

WOLF

2

500 1000 50,000

-

150

100

50

0O 5 10

VOLTS

15 20

II h2. "Probability" of collisions of He ions in He.

W. H. Cramer, J. H. Simone, J. Chem. Phys. 26, 1272 (1957)

M 40(o

30

o

0

r,10 20

I/ _BYT

30 40

II h3. Charge-transfer cross

B. M. Palyukh, L. A.

sections of ions and atoms of mercury.

Sena, J. Exp. Theor. Phys. (U. S. S. R.) 20, 481 (1950)

60

\~ ~~~~TOTAL

CHARGE TRANSFER

ELASTIC

/i"c,---- ---- ----

?j

1,

I,\

to 020f

o a)

~0 _a a ao

- -, 4 ,

C 0

a) a) a)

0 :0 :0 :a v 3 o 0 0 0

Cd - 0 0 0 0L"-O :0 :0 :0

t _ o'o-o oWd > o m > > _ _{ a

a)

av

a a

o -- 0

W m

S x= mm

000000O 0 0

0 0

-l - d

00Lr

Ns

0 0 0 0o000

'-- 0 0

0 10 N-4 N4

o - 3 oo L Ln * n L 0

0) 0; _ ~ ; -0 . -4 0 . . . .N .-I N N - N C,] 1 N - N N N

a) Q)

0 , ,.,-I, C) C)

- a) a,) 0C) a) aL) 4-m b. b. c

Cd Cd C)IC. ; ;l *H

V V W

+a)

+

0 a.,-/

Cd ta) a)

+

+

v

+ +a)+

t t

+ +

+ +

Q C)

.,.* -4 -4 - -* . ,-I ., -I -4

*' .6 r .X *4 N N N N Nt

0 0 00

+ +

~ a + + a ++ + ) +

+ + a) +

+ + + + + ++

t + t tt W

+ + + + +A +

m + ) )+ + + a_ _ _ _ _ _ _ _ _

Ina(-

C-

ol

Cr)o ,'

10

0

CYa).

0 c

Cd

Ena)

Ced

4,

C)

c,a)04a)

a)

4,b:

da)*_q

4-a)

W=

0 N

C· ll

I I W

-d -N r

4 -4

0

v

ONYLo1

-- r

U U -· l

0

o0 0I ! EZN

0 0 C-

61

0

0

0

0:Us-IC)bS.0o-a)

-40-4

r)a;U)

o-0

-

a)

c-Cd

E0.-I1-

C13

r oN

C-c

9C (\]

'd O ONO0· c1 -4 -4

-4__ - -

Cd

-4·rq

10;

N

a

Xa0H

0O0

Qa-Pc0

C)U)aI

0

'0a,CdU

Cda)

0a)

C

r,ud04

-

00

oLIar:0

a

o* -

U)1

0LI

� I

~r_ v25

I VOLT S

II h5. Normal charge-transfer cross sections.J. B. Hasted, Proc. Roy. Soc. (London) A205, 421 (1951)

E

aa-

20 30

II h6. Abnormal charge-transfer cross sections with metastable ions present.J. B. Hasted, Proc. Roy. Soc. (London) A205, 421 (1951)

a.

L

30

eh

gV

*W

Irv-OLTSi~

9

13.

0 I0 30

*IVOLTS

II h7. Charge-transfer cross section of O+ in N as aDotted line is extrapolated.

J. B. Hasted, Proc. Roy. Soc. (London) AZ05,

function of energy.

421 (1951)

LOG , [IMPACT ENERGY (ev)]

II h8. Cross sections for the reactions (H, A13+; H+, Al +), (H, Li +; H + Li+),

(H, A12+; H+ + Al+) as a function of the impact energy of the colliding ion.

A. Dalgarno, Proc. Phys. Soc. 67A, 1010 (1954)

63

30

10I

/ III

I

--

Ore

1.0 1.5 2.0 2.5 3.0 3.5 4.0

LOG [IMPACT ENERGY OF DOUBLY CHARGED ION (ev)]

II h9. Charge -transfer cross sections for the reactions (H, Si2 + H+, Si+ ) and

(H, Be 2 +; H+ Be +).

D. R. Bates, B. L. Moiseiwitsch, Proc. Phys. Soc. 67A, 805 (1954)

64

I

24 x 10

II

<.D

30

,/VOLTS

II hlO. Charge-transfer cross sections of C 2 + in argon, neon, and helium.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956)

25 x 10

2

CM4E

CY

A VOLTS

II hll. Charge-transfer cross sections of N2 + in argon, neon and helium.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956)

65

-18

Cz+ IN A

16 /

12

_ Cz+

IN He

4 - - I--_

0 . . A . ..

_T

I -

10 20 40 50 60

1 I

I

U)cn

0

3

15x 10-'

N

c.)

0

0 20 40

WQ30 x

30 x 10 16

20

10

60

VOLTS

II h12. Charge-transfer cross sections of A + in A, Ne, and He.

J. B. Hasted, R. A. Smith, Proc. Roy. Soc. (London) A235, 354 (1956)

40

OLv~20

0 20-/VOLTS

O+INA

C0O+INA

N INA

40 60

II h13. Charge-transfer cross sections of O+ , CO, and N2 in A.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

66

J

6

A2+ IN A

A2 + I N 5NeA A2+IN He

- I

I(

b0A

10 30

_-

0

0:L.

VOLT S

II h14. Charge-transfer cross sections of H+ in A; D+ in A, Kr, Xe.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

i-

0 40 60

I/VOLTS

II h15. Charge-transfer cross sections of O in Kr, and Br + and C+ in Xe.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

67

+U

+IN Kr

Br+

IN Xe

20

+ IN Xe

I -

.

)_

A f~I

20

0

a-

4(

/OLTS

II h16. Charge-transfer cross section of N+ in Kr.

J. B. Hasted, Proc. Roy. Soc. (London) A212,

7-av-

20 40

235 (1952)

60

. / VOLTS

II h17. Charge-transfer cross sections

J. B. Hasted, Proc. Roy. Soc.

of O+ in HO0; 0+ and H+ in A.

(London) A212, 235 (1952)

68

3o

0 2 4

AE /'

II h18. Maximum voltages of charge-transfer cross sections.

J. B. Hasted, Proc. Roy. Soc. (London) A212, 235 (1952)

69

_ _ �� __

aIE

hv (VOLTS)15.5 17.7 20.7 24.8

800 600- X (A)

31.0 41.3 62.0

400 200

II il. Photoabsorption cross section in A, Ne, and He.

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

70

50xlO- '8

40

c-

0

cQ 30

20

10

0

, I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ARGON

Ne

He

--- --- -- --

hv(VOLTS)4.1 4.8 5.6

II iZ. Photoabsorption cross sections in K.

G. L. Weissler, Handbuch der PhysikVol. 21, p. 304

20x10 - '8

-15;2

a

10

5

(Springer Verlag, Berlin, 1956),

hv (VOLTS)15.5

800

17.7

700- x (4)

20.7 24.8

600 500

II i3. Photoabsorption

G. L. Weissler,Vol. 21, p. 304

cross sections in Hz .

Handbuch der Physik (Springer Verlag, Berlin, 1956),

71

6.9

0.24 x10 ' 18

0.20

0, 16

o 0.12

0.08

0.04

0O0

'P

I -

X ()

hV (VOLTS)10.3 12.4 15 5

1200 1000 800

-- x (A)

20 7 31.0 620

600 400 200

II i4. Photoabsorption

G. L. Weissler,Vol. 21, p. 304

cross sections in N2 .

Handbuch der Physik (Springer Verlag, Berlin, 1956),

hv (VOLTS)

6.9 7.7 8.9 10 3 12.4 15.5 20 7 31.0 62.0

1400 1000 600X (A)

II i5. Photoabsorption cross sections in 02.

G. L. Weissler, Handbuch der Physik (Springer Verlag,Vol. 21, p. 304

Berlin, 1956),

72

50xl0-1 8

40

;- 30

020

0

0

50xlO- 18

40

' 30

20

10

0 1800 200

1

hv (VOLTS)6.9 7.7 8.9 10.3

1800 1600 1400 1200 1000

II i6. Photoabsorption cross section

G. L. Weissler, Handbuch derVol. 21, p. 304

Physik (Springer Verlag, Berlin, 1956),

25x10 °

2

a0

10.3 12 4hV(VOLTS)

15.5 207

1200 1000 800--- X ()

31 0

600 400 200

II i7. Photoabsorption cross sections in CO.

G. L. Weissler, Handbuch derVol. 21, p. 304

Physik (Springer Verlag, Berlin,

73

12.4

25x 10- 8

20

Nc 15

a10

5

0

.18 1P2 - P3

5

5

¢1

1956),

--

v

50x IC

0

Q.

6.9 7.7h (VOLTS)

8.9 10 3 12 4 15.5 20.7 31.0

- X (A)

II i8. Photoabsorption cross sections in CO z.

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

74

I

Z

)O

hv (VOLTS)7.7 8.9 10.3 12.4 15 5 20.7 31.0

50 x 10-18

40

c-

30C2

20

10

01800 1600 1400 1200 1000

-- X(A)

II i9. Photoabsorption cross section in NO.

G. L. Weissler, Handbuch der PhysikVol. 21, p. 304

800 600 400 200

(Springer Verlag, Berlin, 1956),

75

6.9 7.7h v (VOLTS)

8.9 10.3

2000 1800 1600 1400 1200 1000 800 600 400 200

II i10. Photoabsorption cross sections in N20.G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

76

bUXI(

CJ

0

1__ �_ I ___

.IC 19 Id I r r O -

hv (VOLTS)6.9 7.7 8.9 10.3 12.4 15.5 20.7 31.0

70x 10-18

60

50

:5

c0a

40

30

20

10

01800 1600 1400 1200 10(

ill. (A)in C

II il l. Photoabsorption cross sections in C2H2.

)0 800 600 400 200

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

77

0

77 8.9hv (VOLTS)

10.3 12.4 15.5 20.7 31.0 62.0

1800 1600 1400 1200o

--- X (A)

II i12. Photoabsorption cross section in H20.

G. L. Weissler,Vol. 21, p. 304

1000 800 600 400 200

Handbuch der Physik (Springer Verlag, Berlin, 1956),

78

6.9.- . IRFoU X -

25

vr% JlAJ(.U

cJ

a

I10

IP

N

/ 22000

I

IC

'CI �

ncIg �

i

w

I

I15

5

r

II

60 x 0-18

50

c- 40

C

c¢30

20

I0

hV (VOLTS)7.7 8.9 10 3 12.4 15,5 20.7 31.0

J D IIbUI 14UU I IUUU

-- X (A)

U0 bOUU 4UU

II i3. , Photoabsorption cross sections in CH 4 .

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

79

- · � ---

IzUU

h v (VOLTS)

50x

cu

o0C

0

2000 1600 1200 o 800 400

II i14. Photoabsorption cross sections in NH 3 .

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

80

6.9 7.7 8.9hv (VOLTS)

10.3 12.4 15.5 20.7 31.0

a- X (A)

II i15. Photoabsorption cross sections in C2H 4 .

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

81

70x10-18

60

50

: 400

a30

20

10

0

_ _ _ �

III. SURFACE PHENOMENA

(a) Secondary Emission yi

The secondary emission coefficient i is the number of free electrons released froma surface by the impact of a positive ion, over and above any electrons taken from thesurface to neutralize the ion. If is the work function of the surface, and V. is the

1ionization potential of the ion, secondary emission requires that Vi > 2.

The secondary emission coefficient is in general greatly altered by the presence ofadsorbed gas on the surface.

(b) Effective Secondary Emission y

The second Townsend coefficient y is defined as the number of secondaryelectrons escaping from the cathode per positive ion produced in the gas. It is afunction of E/p in the gas and is, in general, the resultant effect of photons, ions, andmetastables reaching the cathode, and of back diffusion.

0.3

0.2

zo

0

-JLU

0200 400

ION ENERGY (VOLTS)

600

IIIal. Ejected electron yield of Li+ , K+ , and Rb+ on aluminum.H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 549

82

1.4

1.2z0

zo

o 0.8w-J

0.6

0.4

0.2

0ION ENERGY (VOLTS)

IIIa2. Ejected electron yield of He +, Ne +, and A+ on nickel.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 549

1.2

1.0

z 0.8o

u')zo 0.6

-J

LUJ

>0.4

0.2

0 200 400 600

ION ENERGY (VOLTS)

800 1000

IIIa2. Electron yield of helium ions on hot and cold molybdenum.

P. F. Little, Handbuch der Physik (Springer Verlag, Berlin,1956), Vol. 21, p. 574

83

He+ - Ni

0.6 0.7 0.8 0.9 1.0COS. 8

III a3. Electron yield as function of the angle of incidence for helium ions on nickel.

P. F. Little, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 574

0.06

z0

z( 0.040o

I-0LuI-J

> 0.02

ION ENERGY (VOLTS)

III a4. Ejected electron yield of K on Al, Ni, and Mo.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena(Clarendon Press, Oxford, 1952), p. 549

84

1.25

zo

I-z0

I-Jv

1.00

0.755

0.5

I .C

1.0

0.8z0

z0 0.60

LU 0.4

'-

0.2

0ION ENERGY (VOLTS)

IIIa5. Total electron yield on atomically clean molybdenum.

H. D. Hagstrum, Phys. Rev. 89, 244 (1953)

400 600 800 1000

ION KINETIC ENERGY (ELECTRON VOLTS)

III a5. y for doubly charged ions of noble gases incident on atomicallyclean molybdenum.

H. D. Hagstrum, Phys. Rev. 104, 672 (1956)

85

z

a:wCLU)

(nz0COC)

OwLU-jLU

MMOLYBDENUM

Ne++

-A ++-

Kr++

Xe++

U. t

0.6

0.4

0.2

00 Zuu

� __ -

i�c

---

I 9

nI,.

c,

0.36

0.28

0.24

0.20

zo

' 0.16zo

Lw 0.12_1.J

ii

0.08

0.04

0 200 400 600 800 1000

ION ENERGY (VOLTS)

III a6. y data for atomically clean tungsten.

H. D. Hagstrum, Phys. Rev. 104, 672 (1956)

1I .0

0.8z0

0.6z0

- 0.40

_J

0.2

0 600 800 1000

ION ENERGY (VOLTS)

III a7. Total electron yield for He+ , He + + , and He2 for gas-covered tantalum.

H. D. Hagstrum, Phys. Rev. 91, 543 (1953)

86

To

++ - ~(GAS -COVERED)

He+

--cc~--- He+

A -A

200 400

10O-

10-2

Z

-0

UJ-I

10-3

6

4

2

10-5U 20 40 bu 80 100 120 140

ION ENERGY (VOLTS)

IIIa8. Ejected electron yield of A+ ions on outgassed tantalum, Hz, N andu -treatea tantulum.

J. A. Parker, Jr., Phys.

2 X10-2

z0

U-,z0

cr0-J

uJ

K

10-3

8

5

3

2

10-4

8

5X 10- 5

Rev. 93, 1148 (1954)

0 20 40 60 80 100 120

ION ENERGY (VOLTS)

III a9. Electron yield on gas-covered tantalum from molecular gas ions.

P. F. Little, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 574

87

- A -

- H2

2T

02

____

e- Ta

I

--- --- --- .

10- 4

0.

O.

zo

0 O.r 0.wa

O.

wz0.

>;

O.

0.

32

TUNGSTEN

28

24 -He+

20

16

12Ar+

08

Kr+

.04= Xe+

_ _ _ X e _ _

0 200 400 600 800 1000

ION KINETIC ENERGY IN ev

III a1O. Total electron yield for singly charged ions on atomically clean tungsten.

H. D. Hagstrum, Phys. Rev. 96 325 (1954)

O.

zo

c-wa_cEz0aI-

-J_JZ

O.

HELIUM32

28

2 _w24

N2/W

20

.16 A -U dUU 4UU bUU bU IL)00

ION KINETIC ENERGY (ELECTRON VOLTS)

III alO. i in helium for clean tungsten (W) and covered with a nitrogen

monolayer (N 2/W).

H. D. Hagstrum, Phys. Rev. 104, 1516 (1956)

88

--

O.

O

zo

00

(Iz

-JLI-

ION KINETIC ENERGY (ELECTRON VOLTS)

III a10. yi in neon for clean tungsten (W) and covered with a nitrogen

monolayer (N 2 /W)

H. D. Hagstrum, Phys. Rev. 104,

ARGON

1516 (1956)

0 200

W

N2 /W

_ ~ I I400 600 800 1000

III alO. yi

H.

ION KINETIC ENERGY (ELECTRON VOLTS)

in argon for clean tungsten (W) and covered with a N2 monolayer (N 2 /W).

D. Hagstrum, Phys. Rev. 104, 1516 (1956)

89

zo

wn 0.0()zo0rr

.W 0.0-I

>;.-

b

)4

0

1__j-i-

I

I i I I

O0

10

r.,

, II I I

z

W

U)z0I-

-JLU

KRYPTON

0 200 400 600 800 1000

ION KINETIC ENERGY (ELECTRON VOLTS)

III a10. i in krypton for clean tungsten (W) and covered with a nitrogen

monolayer (Nz/W).

H. D. Hagstrum, Phys. Rev. 104, 1516 (1956)

rra-

.)

IONz XENONI 0.04

N2 /WLU W

;- 00 200 400 600 800 1000

ION KINETIC ENERGY(ELECTRON VOLTS)

III a10. yi in xenon for clean tungsten (W) and covered with a nitrogen

monolayer (Nz/W)

H. D. Hagstrum,

10-1

zo 10-2

(Iz0or

0LU-J

t 10_k 8

4

216-4i

Phys. Rev. 104, 1516 (1956)

ION ENERGY (VOLTS)

III all. Electron yield on gas-covered platinum.

P. F. Little, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 514

90

9x

zCo

zC

f-CLL

%

ION ENERGY(VOLTS)

III alZ. Electron yield as a function of ion energy for hydrogen, nitrogen,and oxygen ions on platinum.

P. F. Little, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 574

7 -

5

3

a

7 - - - - -

373

3- I A iI-7 d5 //1 d5//

·2~~~

5 --

102 3 5 7 103 3 5 7 104ENERGY (ELECTRON VOLTS)

3 5

IIIal 3. Ejected electron(b) K ions on Al;(e) H ions on Cu,

yields of (a) H and Na ions on Cu;(c) Li ions on Al; (d) Rb ions on Al;Al, and Au; (f) H ions on Ni.

A. von Engel, M. Steenbeck, Elektrische Gasentladungen(Springer Verlag, Berlin, 1932), Vol. 1, p. 116

91

IC¶

10

10,

0-1

z0

uJ(nz0

Iu-J

E (VOLTS/CM)

III a14. Second Townsend coefficient of argon ions on Cs-Ag-O surface.

W. S. Huxford, Phys. Rev. 55, 754 (1939)

10E/p(VOLTS/CM/MM Hg)

IIIbl. Second Townsend coefficient for copper in the rare gases.

M. J. Druyvesteyn, F. M. Penning, Revs. Modern Phys. 12, 87 (1940)

92

0.

l

O.C

r rrnl

N-

A(IN Ne)L_ -=<Kr

Xe

100 1000

'I

l1I/

a��_ __ _ __

I

,I

vvl

C

rv.vvl

10 30 100 300E/p(VOLTS/CM/MM Hg)

IIIb2. Second Townsend coefficient for argon with different cathode materials.

M. J. Druyvesteyn, F. M. Penning, Revs. Modern Phys. 12, 87 (1940)R. Schfer, Z. Physik 110, 21 (1938)

93

-- _I _____I

z0

U)

0

-)

z0

0LuJ-j

z

E/p(VOLTS/CM/MM Hg

IIIb3. Second Townsend coefficient of Ne + ,

molybdenum cathode, and of A + on a

R. N. Varney, Phys. Rev. 93, 1156

A+, and Kr + incident on a clean

partially activated coated cathode.

(1954)

-4

065 - -(~5

10 200 400 600 800

E/p

IIIb4. Values of y as a function of E/p for

E. Badareu, G. G. Bratescu, Bull.

1000 1200 1400

mercury gas with iron electrodes.

Soc. Roumaine Phys. 45, 9 (1944)

E/p (VOLTS/CM/MM Hg)

IIIb5. Values of y as a function of E/p for H2 gas with Al electrodes.

D. H. Hale, Phys. Rev. 56, 1199 (1939)

94

r

A)

I (

I

1,

I1I0.3 I

020 2 _1___

0 .l I_ __ __II

0 200 400 600 800 1000 1200 1400

E/p (VOLTS/CM/MM Hg)

1600 1800

IIIb6. Values of y as a function of

D. H. Hale, Phys. Rev. 56,

E/p for H2 gas

1199 (1939)

with Ni electrodes.

200 400 600 800

E/p ( VOLTS/CM/MM Hg)

1000 1200

IIIb7. Values of y as a function of E/p in nitrogen.

W. E. Bowls, Phys. Rev. 53, 293 (1938)

95

- - ' -

10-5

10~5

10-6

10'8._-P

IU

0 500 1000 1500 2000E/p(VOLTS/CM/MM Hg)

IIIb8. Second Townsend coefficients for aluminumtoluene, and cyclohexane.

in benzene,

M. Valeriu-Petrescu, Bull. Soc. Roumaine Phys. 44, 3 (1943)

0.12 x 10' 4

z0

I-a:0oLI

IL

M

4

0ma.0D

0.08

004

0 40 80 120 160 200

ENERGY OF POSITIVE IONS IN VOLTS

III c 1. Probability of conversion of positive hydrogen ionsinto negative hydrogen ions on nickel.

F. L. Arnot, Proc. Roy. Soc.(London) A158, 137 (1937)

1.5 x 10

Z0

a:0LI-LL0

I-

02a

0.6

ENERGY OF POSITIVE IONS IN VOLTS

IIIc2. Probability of conversion of positive nitrogen ionsinto negative nitrogen ions on nickel.

F. L. Arnot, Proc. Roy. Soc.(London) A158, 137 (1937)

96

BENZENE-

EXTOLUENE

CYCLOHEXANE

2500 3000

3I

----'-A

I/

I I

i

I

1.6x 104

1.2

z0

0o

LLo

I-

-

o_1

0.8

0.4

0 40 80 120 160 200

ENERGY OF POSITIVE IONS IN VOLTS

IIIc3. Probability of conversion of positive oxygen ionsinto negative oxygen ions on nickel.

F. L. Arnot, Proc. Roy. Soc.(London) A158, 137 (1937)

4.0

20

1-2a:0ILU.0

I--0mA

0a:a-

0 40 80 120 160ENERGY OF POSITIVE IONS IN VOLTS

200

IIIc4. Probability of conversion of positive carbon dioxideions into negative carbon dioxide ions on nickel.

F. L. Arnot, Proc. Roy. Soc.(London) A158, 137 (1937)

97

0/

I----- Z-/02

L ---

. . . -45.0x

CO

PRIMARY ENERGY ( ELECTRON VOLTS)

IIIdl. The ratio of the number of secondary electrons emitted from a surface tothe number of primary electrons incident as a function of incident energy.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 306

98

I I

III(el). Photoelectric Work Functions of Elements

Work Function (volts) Reference

4.74

4.36

4.79

4.92

2.49

3.92

4.26

4.81

2.42

3.68

4.55

3.76

1.38

4.8

4.7

4.12

4.73

4.50

2.20

2.42

2.74

3.76

4.15

Z.29

5.06

3.97

4.97

6.35

2.09

4.57

4.56

5.11

3.62

2.24

4.12

4.76

3.47

4.17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

99

Element

Ag

Al

As

Au

Ba

Be

Bi

C

Ca

Cd

Co

Cr

Cs

Cu

Fe

Ga

Ge

Hg

K

Li

Mg

Mn

Mo

Na

Ni

Pb

Pd

Pt

Rb

Rh

Sb

Se

Sn

Sr

Ta

Te

Th

Ti

------C--·�-----·-·l1�--···11111111 -

II(el). Photoelectric Work Functions of Elements

Element

U

V

W

Zn

Zr

Work Function (volts)

3.63

3.77

4.49

4. 307

3.73

Reference

39

40

41

42

43

References

R. P. Winch, Phys. Rev. 37, 1269 (1931)

E. Gaviola and J. Strong, Phys. Rev. 49, 441 (1936)

L. Apker, E. Taft, and J. Dickey, Phys. Rev. 76, 272 (1949)

R. H. Fowler, Phys. Rev. 38, 45 (1931)

R. J. Cashman and E. Bassoe, Phys. Rev. 55, 63 (1939)

M. M. Mann and L. A. DuBridge, Phys. Rev. 51, 120 (1937)

L. Apker, E. Taft, and J. Dickey, Phys. Rev. 76, 272 (1949)

S. C. Roy, Proc. Roy. Soc. (London) A112, 599 (1926)

R. Schulze, Z. Physik 92, 212 (1934)

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

H. Cassel and A. Scheider, Naturwiss. 22, 464 (1934)

J. Dickey, Phys. Rev. 81, 612 (1951)

R. Schulze, Z. Physik 92, 212 (1934)

Ibid.

Ibid.

L. A. DuBridge and W. W. Roehr, Phys. Rev. 42, 52 (1932)

M. M. Mann and L. A. DuBridge, Phys. Rev. 51, 120 (1937)

A. B. Cardwell, Phys. Rev. 76, 125 (1949)

P. Lukirsky and S. Prilezaev, Z. Physik 49, 236 (1928)

L. A. DuBridge and W. W. Roehr, Phys. Rev. 39, 99 (1932)

L. A. DuBridge, Phys. Rev. 31, 236 (1928); 32, 961 (1928)

J. J. Brady, Phys. Rev. 41, 613 (1932)

E. H. Dixon, Phys. Rev. 37, 60 (1931)

100

I

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

1_ _� _ _ _ _ �_ _ _ _� ___

III(el). Photoelectric Work Functions of Elements

References

31. L. Apker, E. Taft,and J. Dickey, Phys. Rev. 76, 272 (1949)

32. R. Schulze, Z. Physik 92, 212 (1934)

33. P. Lukirsky and S. Prilezaev, Z. Physik 49, 236 (1928)

34. R. Schulze, Z. Physik 92, 212 (1934)

35. H. C. Rentschler, D. E. Henry, and A. H. Smith, Rev. Sci. Instr. 3, 794 (1932)

36. L. Apker, E. Taft, and J. Dickey, Phys. Rev. 74, 1462 (1948)

37. H. C. Rentschler and D. E. Henry, Trans. Electrochem. Soc. 87, 289 (1945/46)

38. Ibid.

39. H. C. Rentschler, D. E. Henry, and A. H. Smith, Rev. Sci. Instr. 3, 794 (1932)

40. R. Schulze, Z. Physik 92, 212 (1934)

41. L. Apker, E. Taft, and J. Dickey, Phys. Rev. 74, 1462 (1948)

42. R. Suhrmann and J. Pietrzyk, Z. Physik 122, 600 (1944)

43. H. C. Rentschler and D. E. Henry, Trans. Electrochem. Soc. 87, 289 (1945/46)

101

_ _

-X (A)

40x I

Z-z

0

I0z-1LL

2.Ox 10- 2

0 OoY

.5

Ilu

hv (VOLTS)

III e. Photoelectric yields from Al, Cd, and Zn.

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

102

X (A)2065 1550 1240 1033 885 775 688 620 564 517 477

14xlO

I

ZCz

z0cr)

-IL

hv (VOLTS)

II e3. Photoelectric yields from Ta, Mo, W, and Pd.

G. L. Weissler, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 304

103

IV. MOTIONS OF ELECTRONS AND IONS

The drift velocity vd of a charged particle of mass m and charge e in a gas of

molecules of mass M, under an electric field E, is given by

Vd = e E M+ m If8 4v - v dv (1)vd eMmJ v3

where f(v) is the velocity distribution function.

For particles with a constant mean free time Tc this yields, for all E/p,

M+meE Vd Mm e E Tc (2)

If collisions are caused by a polarization force

1. 8096 (Mm /a 1/2Tc en (M + m) (3)

g

where the polarizability a = ( - E )/n .

For particles with a constant mean free path c (rigid spheres) there are two limiting

forms:

(a) near thermal equilibrium

3 e E c _ M + m 1 / Z

Vd = 8 (2 kT Mm (4)

(b) for high E/p

1/4 eE 1/2 0. 8973 for m Mvd = a ) c a = 0.9643 for m = M

d m \M(5)1 for m >> M

The mobility in a mixture of gases a, b, c, ... is given by Blanc's law

1 1 1 1 (6)

' ~a ~b [c

where Pa' Lb' c' ... . are the mobilities in the pure gases a, b, c, . .. at their partial

pressures Pa' Pb' Pc' ... provided the mobilities are sensibly independent of field

strength.

Because of charge transfer when moving in the parent gas and clustering in the

presence of an attaching gas, ions may move considerably slower than indicated by these

equations.

In the case of a constant mean free time Tc, the mobility in an ac electric field of

circular frequency o and in the presence of a magnetic field whose component perpen-

dicular to the electric field is B_, is given by

104

e/2m e/2m1= + (7)

Vc + j(w + wb) vc +j( -b)

where wb = B_ e/m is the cyclotron frequency.

The complex conductivity of a plasma is given by

C =n+e .+ +n e _ +jw E (8)

For a completely ionized plasma

1.1632 m (4 o 2 kT 3/2 19141 kT 3/2z ln(q-1) e/ ) z n e mho/meter (9)

3 2 X214where q = 12 n D. D = EokT/ne 2 is the Debye length, and nD = 3. 134 X 104T

meters-. z is the charge on the ions.

If is the mean fraction of the energy difference which is transferred in a collision,

the mean energy of an electron or ion is given by

1mv = 3 kT + eET Vd/ (10)

For elastic collisions

X = 2 Mm/(M+m) 2

For the mean free time case

22Vd M +mX( 3iJ) (11)2v m

Mean energies are usually determined by the approximate relation

D 3 em(v-~v) (12)3e

which is exact when the distribution function is Maxwellian.

The diffusion coefficient is given by

D = f f4fv dv (13)

When the Debye length XD is less than the diffusion length A, oppositely charged

particles will be constrained by the space-charge field to diffuse at the same rate. This

is termed ambipolar diffusion, and the common diffusion coefficient is

+D + _ D+ 1 +T /T+Da + + + 1 +

~+. ~+ 1 + + ~

105

4 _

HELIUM

2 _ _ __ _

0 0.5 1.0 1.5 2.0 2.5 3. 35 4.0 4.5 5.

E/p (VOLTS/CM/MM Hg )

IV al. Drift velocity of electrons in helium as a function of E/p.

R. A. Nielsen, Phys. Rev. 50, 950 (1936)J. A. Hornbeck, Phys. Rev. 83, 374 (1951)

2.0x o10

>U)

z,>(

12

).8

0.4

V0 0.2 0.4 0.6 0.8 1.0 1.2

E/p(VOLTS/CM/MN Hg)

1.4 1.6

IV aZ. Drift velocity of electrons in neon as a function of E/p.

R. A. Nielsen, Phys. Rev. 50, 950 (1936)

106

5 l0

<3

2U

oJ1

NEON

i,- --- -- ---

1-Z

;?

I--,"

I

r

0

_-

I I I I I i0.4

l6 _______06

0.2

2.0

0 0.1 0.2 0.3 0.4 0.5 0.61.6

12 _ ___ _

0.6

ARGON

0.4

0 0.5 1.0 1.5 2.0 2.5 3.0 3 5 4.0 45

E/p(VOLTS/ CM/MM Hg)

IV a3. Drift velocity of electrons in argon as a function of E/p.

R. A. Nielsen, Phys. Rev. 50, 950 (1936)L. Colli, U. Facchini, Rev. Sci. Instr. 23, 39 (1952)J. M. Kirshner, D. S. Toffolo, J. Appl. Phys. 23, 594 (1952)

I 0.1 0.2 0.3 0.4 0.5 0.6 0.E /p (VOLTS/CM/MM Hg)

7 0.8 0.9 1.0

IV a4. Electron drift velocities in argon and argon-nitrogen mixtures.

L. Colli, U. Facchini, Rev. Sci. Instr. 23, 39 (1952)J. M. Kirshner, D. S. Toffolo, J. Appl Phys. 23, 594 (1952)

107

2.4x

ziU

0-Jwod:>

2.8 x 10

2

o00I

o0

'.4

I.0

1.6

1.2

).8

0O4

n

ARGON +1% NITROGEN

_ _

ARGON + 0.1% NITROGEN

I4 I I ARGON

I- L I I _1.1 1.2i

7I

I

=I_

z

I-

7z

7I

_f __ -- 1

I

I

v

6

0.- --

04

0.4 O8 1.2

2 "- I

E (V L /MIHYDROGEN

O 2 4 6 8 10 12 14 16 18 2(

E/p(VOLTS/CM/MM Hg)

IV a5. Drift velocity of electrons in hydrogen as a function of E/p.

N. E. Bradbury, R. A. Nielsen, Phys. Rev. 49, 388 (1936)

0

E/p (VOLTS/CM /MM Hg )

IV a6. Drift velocity of electrons in hydrogen and deuterium.

B. I. H. Hall, Australian J. Phys. 8, 468 (1955)

108

7x10

zwW

2

I-

0-JLd

28x11

(,

C-)2

oI-t0-Jw

04

H2

4

o Io In n An .

0

I

.v *i.v .v ,,,V r. V

7x 10

awQ7

1X

oJ>

0

E/p(VOLTS/CM/MM Hg)

IV a7. Drift velocity of electrons in nitrogen as a function of E/p.

R. A. Nielsen, Phys. Rev. 50, 950 (1936)L. Colli, U. Facchini. Rev. Sci. Instr. 23, 39 (1952)

14 x I

aI3o

,-I

0

8

6

4

2

0 2 4 6 8 10 12 14 16 18 20

E/p(VOLTS/CM/MM Hg)

IV a8. Drift velocity of electrons in oxygen as a function of E/p.

R. A. Nielsen, N. E. Bradbury, Phys. Rev. 51, 69 (1937)

109

X:X

1

1/L/

/

r--

Oxy

;EN

F� t--

-�--

I12

I(

10

U

0win2

so

o

I I I

6 I. ,

6 00 0.4 0.8 1.2 1.6 2.0

4 / ___' /

--- ~ ~ ~ ~~~~AIR2 i

0 2 4 6 8 10 12 14 16 18 20 2:

E/p(VOLTS/CM/MM Hg)

IV a9. Drift velocity of electrons in air as a function of E/p.

R. A. Nielsen, N. E. Bradbury, Phys. Rev. 51, 69 (1937)

0

E/p (VOLTS/CM/M M Hg)

IV a10. Drift velocity of electrons in the halogens.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 53

110

14 x

wW

Io

0uJ

I

2

. A lo 6

10o

6 _ _ _ _

2 _ _

O 0.8 1.6

E/p(VOLTS/CM/MM Hg)

2.4 3.2

IV all. Drift velocity of electrons in nitrous oxide as

R. A. Nielsen, N. E. Bradbury, Phys. Rev.

a function of E/p.

51, 69 (1937)

111

8x

U)

_1

t0-o

4.0

- --

12x

Z30

0001W

E /p (VOLTS/CM/MM Hg )

IV a12. Drift velocity of electrons in ammonia as a function of E/p.

R. A. Nielsen, N. E. Bradbury, Phys. Rev. 51, 69 (1937)

12 x IC

GW

I

0

0co

W

E/p(VOLTS/CM/MM Hg)

IV a13. Drift velocity of electrons in C 5 H 1 2 , NH 3, H 2 0, and HCl.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 86

112

s

16,

E/p(VOLTS/CM/MMHg)

IV a14. Drift velocity of electrons in NO2, COz, NO, and CO.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 85

I

0

r

zWW

CLU

Ee/p VOLTS/CM MM -

IVbl. Average energy of electrons in helium.

F. H. Reder, S. C. Brown, Phys. Rev. 95, 885 (1954)

113

'x

E/p(VOLTS/CM/MM Hg)

IV b. Ratio of electron to gas temperature.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 78

III-j0

UZ

0WPO

W

-q

WZ

Wr

10 20 30 40 50 70 90

E/p (VOLTS/CM/MM Hg)

IV b3. Average electron energy in hydrogen.

L. J. Varnerin, Jr., S. C. Brown, Phys. Rev. 79, 946 (1950)J. S. Townsend, V. A. Bailey, Phil. Mag. 42, 873 (1921)

114

�__�I�--- --- _I -- --

60

50

40

30

0'H-

H,

E/p (VOLTS/CM/MM Hg)

IV b4. Ratio of electron to gas temperature in deuterium and hydrogen.

B. I. H. Hall, Australian J. Phys. 8_, 468 (1955)

0P

I;

V IV zo 30 40 50 60 70 80

E/p(VOLTS/CM/MM Hg)

IV b5. Ratio of electron to gas temperature.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 52

115

D2

H,

1 5 6 7 8 9 11

20

10

0 0

I-

I-

65

NZ60

55

50

45

4O

35 -NITROGEN

30 OXYGEN

25l A AIR

20

15

10

5

ni n3 n' I"~ 4 N . ~ 7 (3 ~l~ ' 4N ~t~l -{" In 3n ~t' /ll s1' 'T I1"1lA

E/p (VOLTS/CM/MM Hg)

IV b6. Ratio of electron to gas temperature.

Air: R. W. Crompton, L. G. H. Huxley, D. J. Sutton, Proc. Roy. Soc.(London) A218, 507 (1953)

N2 : R. W. Crompton, D. J. Sutton, Proc. Roy. Soc. (London) A215,467 (1952)

0 2 : R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 79

116

v.l v.* v.J .7 Vo V.I I.V LV VV TV 1V ,V v VV

lo(

so -~~~~~q 20

60 co

40 - I___

20

40 50

E/p (VOLTS/CM/MM Hg)

IV b7. Ratio of electron to gas temperature.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 80

I

0

E/p (VOLTS/CM/MM Hg)

IV b8. Ratio of electron to gas temperature.

R. H. Healey, J. W. Reed, The Behavior of Slow Electrons in Gases,Amalgamated Wireless, Ltd., Sydney, 1941, p. 81

117

--

01II-

0 10 20

HefIN He IN Ne

+ IN-Al

5 8 10 20 40 60 80100 200 400 600 1000

E/p (VOLTS/CM/MM Hg)

IV cl. Drift velocity of atomic ions in helium, neon, and argon.

J. A. Hornbeck, Phys. Rev. 84, 615 (1951)

L

w

-J

©

E/p (VOLTS/CM/MM Hg)

IV c1. Ion mobility in He, Ne, and A.

L. S. Frost, Phys. Rev. 105, 354 (1957)

118

x 105

4

2

0.80

I-, 0.40o 0 4

0.2

0.1

I.-, 1A I I I I I I I

/ I I 11 I I

I I

0w

I.--j0

004.:L

24

He+20 - __-

16

12

8

4

A

IV c2. Mobility of He+

M. A. Biondi,

ujw

..J0cQJO0

-jMm0

v0

14 16 18

and He 2 in helium.

L. M. Chanin, Phys. Rev. 94, 910 (1954)

100 200 300 400

T °K

IV c2. Helium ion mobility as a function of temperature.

L. M. Chanin, M. A. Biondi, Phys. Rev. 106, 473 (1957)

119

2 4 6 8 10 12E/p(VOLTS/CM/MM Hg)

24

He.

20

16

12

He+

4

r3

--

8

6

4

2

n

0 4 8

E/p(VOLTS/CM/MM Hg)

IV c3. Mobility of Ne + and Ne; in neon.

M. A. Biondi, L. M. Chanin, Phys. Rev. 94, 910 (1954)

wEn0')

o(I)I--C_

0

-o 100 200

T °K

300 400

IV c3. Neon ion mobilities as a function of temperature.

L. M. Chanin, M. A. Biondi, Phys. Rev. 106, 473 (1957)

120

oLLJ

-J0

0

-L

Ne+

20

IV

9

85 '"' ~ -...... _. ~ ~. N e+27

6

4

3

2

O ~~ --......_

12 16

o

I-

o:L

A+

8 16 24 32 41E/p(VOLTS/CM/MM Hg)

IV c4. Mobility of A+ an(

M. A. Biondi, L.

A in argon.

M. Chanin, IPhys. Rev. 94, 910 (1954)

w

O0

o>-

-J

O

..0

3.2

24_

2.0

1.6_ _

1.2

0.8

0.4

nv0 100 200 300 400

T K

IV c4. Argon ion mobilities as a function of temperature.

L. M. Chanin, M. A. Biondi, Phys. Rev. 106, 473 (1957)

121

- I

0

,,

4x1 I

ow(0

C)

0ro-J(I

20 40 60 80 100 PUU suu ouV VVV vv

E/p(VOLTS/CM/MM Hg)

IV c5. Drift velocity of atomic ions in krypton and xenon.

R. N. Varney, Phys. Rev. 88,

o

I

-j0W

E/p(VOLTS/CM/MM Hg)

r .A Mnhility of Kr+ and Kr+ in krypton.

M. A. Biondi, L. M. Chanin, Phys. Rev. 94, 910 (1954)

122

Inr%

362 (1952)

1V v,

w

I-

0

0%L

E/p( VOLTS/GM/

IV c7. Mobility of Xe+ and Xe 2 in xenon.

M. A. Biondi, L. M. Chanin, Ph

0 2 4 6 8

0

IM Hg)

ys. Rev. 94, 910 (1954)

10 12E/p (VOLTS/CM x MM Hg)

IV c8. Mobility of mercury ions in helium at 300' K.

L. M. Chanin, M. A. Biondi, Phys. Rev. 107, 1219 (1957)

123

o

2

I

LuJCO

I-

-J

0m

O

6

2

8

4

14

- . -

II

I -

Co

I

16 18 20

E/p (VOLTS/CM x MM Hg)

IV c9. Mobility of mercury ions in neon at 300 ° K.

L. M. Chanin, M. A. Biondi, Phys. Rev. 107, 1219 (1957)

0w

-J0

N

0

O3H8>-(D

m0rn

E/p(VOLTS/CM xMM Hg)

IV c10. Mobility of mercury ions in argon at 300" K.

L. M. Chanin, M. A. Biondi, Phys. Rev. 107, 1219 (1957)

124

70

6.0

_ 5.0

UJ

04.0

0Co

02.0

1.0

2 6 8 10 12 14

� �I � � I -I � .

� c : -I -

I - - -C-------- ---- ----

iI I ----

4

315 ..

1~~~~~~~

1.0 .JI _ .39 --.- . . -_ _ _ _ _ --2 _ _ _ _ _

0.90.8 - -- - - -0.7-

0.6 /

04 -I-20 30 40 50 70 90 150 200

E /p(VOLTS/CM/MM Hg)

300 600 1000

IV cll. Drift velocity of ions in nitrogen. Low (E/p)

R. N. Varney, Phys. Rev. 89, 708 (1953)

_ 43Ox

G

C

IL

0

E /p (VOLTS/CM x MM Hg)

N4 , high (E/p) N 2.

IV cll. Drift velocities of ions in N2 at various temperatures, N4+

ions at low E/p, N2 ions at high E/p.

F. R. Kovar, E. C. Beatty, R. N. Varney, Phys. Rev. 107, 1490 (1957)

1Z5

4x l

o

i

C)0o

>

20 30 40 60 80 100 200 300 600 1000

E/p (VOLTS/CM/MM Hg)

IV clZ. Drift velocity of ions in oxygen.

R. N. Varney, Phys. Rev. 89, 708 (1953)

4.0

w, 3.0C')

0

:i 2.0

E/p (VOLT/CM/MM Hg)

IV c13. Mobility of , 02, 03 in oxygen.

D. S. Burch, R. Geballe, Phys. Rev. 106, 183 (1957)

126

6 x K05

4

3

2

3

0

0-IiJ,.

1.0

0.8

0.6

0.4

0.3

0.2

I I I I I I Ii I I

- ;71' -el-,

I I

I I I II I- 7

I I

I

/ ____ __ __ __ �_�

4xi05

3

ow

E0

>.-

-

w

2

1.5

1.0

0.8

0.6

v// /

I/ -- /f -...j/

50 80 100 200 300 400

E/p (VOLTS/CM/MM Hg)

IV c14. Drift velocity of ions in carbon monoxide.intermediate (E/p) may be CO+.

R. N. Varney, Phys. Rev. 89, 708 (1953)

a

0

N(0o

C2,-

-I3

25

20

16

12O10

8

65

4

3

2

2

0 7 23

600 800 1000

w (E/p) and high (E/p) CO + ,

85MASS OF ION

IV c15. Mobility of alkali ions in H2 , Kr, Xe at 1 atmosphere pressure.

C. F. Powell, L. Brada, Proc. Roy. Soc. (London) A138, 117 (1932)

127

.0 I

o-

.0 HYDROGEN

.0

.0

,.0

.0

-.0

5

.O

1.6 _KRYPTON

.21.2 __ XENON1.0

- -

I

39 135

On0Lu

-

To0:W

20

HELIUM

V

NEON

4

ARGON

50 100 150 200MASS OF ION

IV c15. Mobility as a function of ion mass in He, Ne, A.

L. M. Chanin, M. A. Biondi, Phys. Rev. 107, 1219 (1957)

0 20 40 60 80 100 120 140 160 180 200 220

MASS OF ION

IV c16. Mobility in nitrogen of various ions as a function of mass at1 atmosphere pressure.

J. H. Mitchell, K. E. W. Ridler, Proc. Roy. Soc. (London) A146, 911(1934)

128

4.4

4.0

io0

3.2

-J 2.8

o0

2.4

no

v0

90

25

i

o

o2

z

_:M0

15

10

5

S

NO,He

Ce*,He

N+, Nt

'0 100 200 300 400

TEMPERATURE (°K)500 600

IV c17. Variation of mobility of ions with temperature.

A. M Tyndall, A. F. Pearce, Proc. Roy. Soc. A, 149, 426 (1935)A. F. Pearce, Proc. Roy. Soc. (London) A155, 490 (1936)

129

I7-

L-A. A _ . _ .

0

w

-

-Jm

o

0

E/p (VOLTS/CM/MM Hg)

IV c18. Mobility of Li+ ions in argon in the presence of water vapor,to show effect of clustering.

H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic ImpactPhenomena (Clarendon Press, Oxford, 1952), p. 414

130

IV(dl). Table of Ambipolar Diffusion Coefficients(room temperature)

Element Da poa Po

H2

He

(cm2 sec ) Reference

700

540

Ne 115

A

0+

2Ga

900

225

87

1

2

3

4

5

5

References

1. K. B. Persson, S. C. Brown, Phys. Rev. 100, 729 (1955)

2. M. A. Biondi, S. C. Brown, Phys. Rev. 75, 1700 (1949)

3. M. A. Biondi, Phys. Rev. 79, 733 (1950)

4. M. A. Biondi, Phys. Rev. 83, 1078 (1951)

5. E. Schulz-DuBois, Z. Physik 145, 269 (1956)

131

V. PRODUCTION AND DECAY OF IONIZATION

(a) The rate of ionization by electrons in a gas is defined as dn/dt = n vi. It is

related to the "probability" of ionization Pi by

n = Vi = P P i f 41T v3 dv (1)

The first Townsend coefficient ai , the number of ionizations per electron per centi-

meter path, is

1 dn Vi 1Vi

i n dx vd pE (2)

The number of ionizations per electron per volt is

a. v.

'-E _ (3)r1 E E 2(

This quantity is a function of E/p only. When there are non-ionizing inelastic collisions

(no Penning effect), ai can be represented by the function

i Ae-Bp/E= Ae (4)

p

where A is a slowly decreasing function of E/p.

(b) The attachment coefficient p is similar to a. and measures the rate of attach-

ment of electrons to neutral atoms.

1 dn a (5)= ndx - E

The attachment efficiency h is the number of attachments per collision

a _ pRE 4 mE (6)

VC Vc

The last expression is generally used to compute h from experimental data but is

correct only if Pc is independent of electron velocity.

(c) The ion recombination coefficient ar is defined by

1 dnr 2 dt

n

Its dependence on pressure and temperature may be represented by

1 T 4

- =a + b P (8)a p Tr

where the first term was proposed by Thomson; the second, by Langevin.

132

__ 1_ �_ ___ �

V(al). Table 1. Constants A and B in Eq. 4.

A

ion pairs

cm. X mm. Hg

5

12

20

15

13

25

3

4

14

17

26

20

B

V

cm. X mm. Hg

130

342

466

365

290

380

34 (25)

100

180

240

350

370

Range of validityE/p

V

cm. X mm. Hg

150-

100-

600

600

500-1000

100- 800

150-1000

200-1000

20- 150

100- 400

100- 600

100- 1000

200- 800

200- 600

(3-10)

From A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956), Vol. 21, p. 504.

133

Gas

H 2

N 2

O z

CO2

air

H20

HC1

He

Ne

A

Kr

Xe

Hg

V.1

in V

15.4

15.5

12.2

13.7

12.6

24.5

21.5

15.7

14

12.1

10.4

- --- ·

0

>p

E/p (VOLTS/CM xMM Hg)

V a2. V in i= i exp [h(V - Vo)] .

M. J. Druyvesteyn, F. M. Penning, Revs. Modern Phys. 12, 87 (1940)

134

)O

0

011-

X

(I)n

z0-Z0

.

r

I

IV2 4 10 2 4 102 2 4 103 2

E /p (VOLTS/CM x MM Hg)

V a3. First Townsend ionization coefficients in noble gases.

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956)Vol. 21, p. 504

135

_ __1_1

I

O

0n

oz

tJ

U 4UU '+UU OUU UU IUUU Iu U 14u U IOUU

E/p(VOLTS/CMx MM Hg)

I~UU

V a3. First Townsend ionization coefficient in Xe, Kr, A.

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

0

x

zo

a-_o

20

8 .

16

ARGON14

12

IC

8

6

2

O I10 2 5 102 2 5 10

32

E/p(VOLTS/CM xMM Hg)

V a3. First Townsend ionization coefficient in argon.

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

136

7I

"o

I

I

I.C

O0o-

22

0~coIr

z0a<Z0.

dE

0.0(20 40 60 80 100 120

E/p (VOLTS/CM/MM Hg)

V a4. Townsend's first ionization coefficients in nitrogen.

M. A. Harrison,

0.2

0.1

0.07

0.05

I

(I

rrM:

QOZo

0.0o

o.O:

0.0

0. 00

O. 00

o.00o

O0.00

2

1

7

5

3

2

20

Phys. Rev. 105, 366 (1957)

40 80

p/E (M M Hg/VOLT/CM) x0 3

V a5. First Townsend ionization coefficient for oxygen.

D. S. Burch, R. Geballe, Technical Report 4, Department of Physics,University of Washington, Aug. 24, 1956

137

)I Y)0____ ____

.1______ ______ ______ __ /___

;-1

\

��I,

II,

O.(

I

bU

0x

0ren

z0

C-cu

E/p (VOLTS/CM xMM Hg)

V a6. First Townsend ionization coefficients of air, N2 , H2 .

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

138

i D

00

I,

-I

-2

-3

10-4In

I

x

Tl° 1013oo Q

10

0 0.01 0.02 0.03 0.04po- (CM x MM Hg VOLT

- ')

0.05 0.06 0.07

V a7. First Townsend ionization coefficients.

D. J. Rose (unpublished)

Iu

U ILUUU 1500

E/p

V a8. First Townsend coefficient for mercury.

E. Badareu, G. G. Bratescu, Bull. Soc. Roumaine Phys. 45, 9 (1944)

139

DEUTERIUM

HYDROGEN

. -

I

/

tt

�NN

4 I1-1 _\1

YZ,1

I

jI

-- -- l- - -- -- . l _ l

JCI

_ _ . _

LI

4,\4U

_

10 12 14 16 18E/p (VOLTS/CM/MM Hg)

V a9. First Townsend coefficient in CO 2 .

D. R. Young, Technical Report No. 22, LaboratoryM.I.T., August 1949

for Insulation Research,

140

3.2 x 10

2.

2.

2.

3

8

4 .

0 X

6

2

8 -

I

z0

0.

0.6 8 20 22

-·-- ------ --

1.

0I

0-201U (C.

C

E/p(VOLTS/CM x MM Hg)

V alO. First Townsend ionization coefficient for H 2 0, C H5OH.

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

141

I I _ - �----r� -- - - _

x

c

aZ

E /p (VOLTS/CM x MM Hg)

V all. First Townsend ionization coefficient in HC1, CO2 .A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

142

lOx 0

:r

0

z00aW

E/p(VOLTS/CM xMM Hg)

V al2. First Townsend ionization coefficients in SF 6 .

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

x

rOU

0-

E/p (VOLTS/CM xMM Hg)

V a13. First Townsend ionization coefficients in CC12 F 2 , CF 3CF 5 .

A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 21, p. 504

143

I _ _

iO

-I0-

x

(I0

r-

0z 10- 2

0n3

in-3,0 100 200 300

E/p (VOLTS /CM x MM Hg)

V a14. First ionization coefficients in air, C 2 H5 C1, C 5 H 1 2 , C 2 H 5 Br, SF6 , CHC13, CC14 .A. von Engel, Handbuch der Physik (Springer Verlag, Berlin, 1956), Vol. 21,p. 504

144

II

0.01 U.UI3 0.02

p/E (MM Hg/ VOLT/CM)

Va15. First Townsend

L. Frommhold,

I

0~z

0

aja.

ionization coefficient for ethyl alcohol.

Z. Physik 144, 396 (1956)

45 f TOLUENE

40CYCLOHEXANE BEN NE

30

25

20

15 /

5 5 _ _ _ _0 500 1000 1500 2000 2500E/p (VOLTS/CM/MM Hg)

3000

Va16. First Townsend coefficients for benzene, toluene, andcyclohexane.

M. Valeriu-Petrescu, Bull. Soc. Roumaine Phys. 44,3 (1943)

145

2

I'r2

0

0-a_Z0'iC

0.,

O.'

0.

O.:

O.

O.0

0.0'

0.0.

0.0?

7

3

0.005 0.025i L

-- ---------

l

7_

3_

00

"n

z0

E/p(VOLTS/CM/MM Hg)

V a17. Ionizations per volt per mm Hg at 0O C for the rare gases and air.

M. J. Druyvesteyn, F. M. Penning, Revs. Modern Phys. 12, 87 (1940)

146

)

-

F- 0(I0

CCC

E/P(VOLTS/CM/MM Hg)

V a18. Ionizations per volt per mm Hg at 0° C for neon-argon mixtures.The numbers on each curve give the ratio of the argon pressureto the total pressure of the mixture.

A. A. Kruithof, F. M. Penning, Physica4, 450 (1937)

147

I _ __ _ _

0

zo

z0

p/E(MMHg/VOLT/CM)

V a19. Variation of rn with p/E for high pressure H2 .

C. C. Leiby, Jr., S. B. Thesis, Department of Physics, M. I. T., May 1954

ov0g-Z0

Nz0

10 10O

E (VOLTS/ CM x MM Hg )T.

Val9. Ionizations per volt per mm Hg at 0° C

D. J. Rose (unpublished)

in hydrogen.

148

·I10

~

18 x

zo

n

I

-

oUi7:

0 I 2 3 4 5 6

E/p(VOLTS/CM/MM Hg)

Vbl. Efficiency of electron attachment in nitric oxide.

N. E. Bradbury, J. Chem. Phys. 2, 827 (1934)

0 10 20 30

E/p(VOLT/CMx MM Hg)

V bZ. Attachment coefficient for oxygen.

D. S. Burch, R. Geballe, Phys. Rev. 106, 183 (1957)

149

I

0

IC)

zw

I0

40

1 _ _C _ _ _

ZuO 0 40

E/p VOLTS/CM x MM Hg

CF SF

Vb3. Electron attachment coefficient for air.

M. A. Harrison, R. Geballe, Phys. Rev.

/

FREON

100 125 150 175 200 225

E/p VOLTS/CM x MM Hg

91, 1 (1953)

250

Vb4. Electron attachment coefficients for Freon-12 and CF3SF5.

M. A. Harrison, R. Geballe, Phys. Rev. 91, 1 (1953)

150

AIR

/

0.012

0.010

I

M 0.008

uI, 0.006

w

I M" "

·-0.002

0

10 60

2.5

, 2.0I

U 1.5

zI

1.0

.5

00.5

75

i

I b

.·;

I

' A A 50 A

nn __[I I m

ox IV

z0

I-J-J0C.)IF-zw

I0

I-

.I-

4

00 2 8 10

E/p(VOLTS/CM/MM Hg)

V b5. Efficiency of electron attachment in HC1 in argon.

N. E. Bradbury, J. Chem. Phys. 2, 827 (1934)

3xlO10

zO

-Jon-o0

z

I21

2

n0 2 4 6 8

E/p(VOLTS/CM/MM Hg)

10 12

V b6. Efficiency of electron attachment in C12 in argon.

N. E. Bradbury, J. Chem. Phys. 2, 827 (1934)

151

K1-r

z" I----

-

i

ii

7'

7-

-

_ -$3

II c

7N

I2

Br2

02 :~

I 2 3 4ELECTRON ENERGY (VOLTS)

Vb6. Cross sections

R. H. Healey,

for attachment of electrons

Phil. Mag. 26, 940 (1938)

to halogen molecules.

152

12x 10-"

lU

8

6

4

2

co

0

Sa

-x

0

I7,

7--

·r r

OR

,,

IJ

4 8 12 16 20

E/p(VOLTS/CM/MM Hg)

Vb7. Efficiency of electron attachment in H20 at different pressures.

N. E. Bradbury, H. E. Tatel, J. Chem. Phys. 2, 835 (1934)

-

12 16 20 24

E/p(VOLTS/CM/MM Hg)

V b8. Efficiency of electron attachment in HZS.

N. E. Bradbury, H. E. Tatel, J. Chem. Phys. 2, 835 (1934)

153

8x8xIO

Tz0(n-J-J0

zII

1-

2

0

52x 0

2.4

-J)-J0o

en

z 1.6II

s 0.8

4 8

-5

--- I

"---Z

I'

7��

0n

C

16 20 24

E/p(VOLTS/CM/MM Hg)

V b9. Efficiency of electron attachment in N2O.

N. E. Bradbury, H. E. Tatel, J. Chem.

0 4 8 12 16 20

E/p (VOLTS/CM/MM Hg)

V blO. Efficiency of electron attachment in SO2.

N. E. Bradbury, H. E. Tatel, J. Chem.

Phys. 2, 835 (1934)

24 28

Phys. 2, 835 (1934)

154

15 x

z0cn-J-J0

zwI0

-

I-

10

5

00 4 8 12

{f) --

--

ZZ

iv

._

0 4 8 12 16 20 24

E/p (VOLTS/CM/MM Hg)

Vbll. Efficiency of

N. E. Bradbi

z0

U)-JJ

0(--zIETU

60

50

40

30

20

In

electron attachment in NH 3.

iry, J. Chem. Phys. 2, 827 (1934)

N2 0 +A

/.. /n+N

1 2 3 4 5 6

E/p(VOLTS/CM/MM Hg)

V b12. Efficiency of electron attachment in mixturesparts of N or A.

of N2 0 in equal

N. E. Bradbury, H. E. Tatel, J. Chem. Phys. 2, 835 (1934)

155

Z0-J 60

-J

z

I-

0

I FI

i--

77-

/ N2(

N 0

I

.... --4OVX IV

-, . ,~-5lily iL -* V^,

._

50x

z0

J

o-Jo00cnz

I014I-I-

0 2 4 6 8 10 12 14

E/p(VOLTS/CM/MM Hg)

Vb13. Efficiency of electron attachment in NH 3 andequal parts of He, A, or N2 .

N. E. Bradbury, J. Chem. Phys. 2, 827 (1934)

156

41

V(cl). Cross Sections for Radiative Capture of an Electron to

Various States of a Hydrogen Atom

Electron Energy (eV)

Total quantum number ofatomic state into which

electron is captured

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.28 0.13

Cross section

8.10

4.24

2.70

1.88

1.36

0.99

0.73

0. 15

16. 63

8.93

5.91

4.24

3.20

2.49

2. 00

1. 62

1.31

1.04

0.215

28

0. 069

-21 2in 10 cm

32.80

17.70

12.04

8.84

6.89

5.51

4.52

3.81

3.23

2.74

2.33

2.00

1.72

1.47

0.302

40

Sum for all final states 23.0 53. 7 119

From H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact(Clarendon Press, Oxford, 1952), p. 333.

0.432

272

Phenomena

157

0. 034

66.95

36. 52

24. 88

18. 59

14. 85

12.25

10.31

8. 75

7. 55

6. 50

5. 72

4.52

4.03

3. 62

3. 25

2.91

2. 62

2. 35

2. 09

1 _ _ _111___

V (c 1). Radiative Recombination Coefficients

Element a(cm3 see 1 Ta~ sec )TokH(1) lo10

A(2) 2 X 10- 1 0 3100

Cs(2) 3.4 X 10- 1 0 2000

Hg ( 3 ) 2.3 X 10- 1 0 2000

References:

(1) J. D. Craggs, W. Hopwood, Proc. Phys. Soc. (London) 59, 771 (1947)

(2) C. Kenty, Phys. Rev. 32, 624 (1928)

(3) F. L. Mohler, Bur. Standards J. Research 19, 447, 559 (1937)

V (c2). Dissociative Recombination

Gas a(ions sec) -1

He 1.7 X 10-8

Ne 2. 1X10- 7

A 3X 10- 7

Kr 6X 10 - 7

Xe 2 X 10-6

N2 1.4X 10 - 6

02 2.8 10-7

References:

M. A. Biondi, S. C. Brown, Phys. Rev. 76, 1697 (1949)

R. B. Holt, J. M. Richardson, B. Howland, B. T. McClure, Phys.Rev. 77, 239 (1950)

R. A. Johnson, B. T. McClure, R. B. Holt, Phys. Rev. 80, 376 (1950)

A. Redfield, R. B. Holt, Phys. Rev. 82, 874 (1951)

J. M. Richardson, Phys. Rev. 88, 895 (1952)

V (c3). Three-Body Recombination Coefficients for Electrons

Gas a at N. T. P. Estimated saturation pressure

(cm 3/sec) (mm Hg)

Helium 6.8 X 10 - 9 2.8 X 104

Argon 6.8 X 10 - 1 1 2.8 X 10 - 5

Air 1.7 X 10- 7 10 4

Hydrogen 1.6 X 10- 7 104

From H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena(Clarendon Press, Oxford, 1952), p. 635.

158

3

2.5 x IC

I

lO3

PRESSURE MM Hg

Vdl. Recombination coefficient in air.

J. Sayers, Proc. Roy. Soc. (London) A169, 83 (1938)

2.5 x

0n

Ea

PRESSURE MM Hg

Vdl. Recombination coefficient in air.

J. Sayers, Proc. Roy. Soc. (London) A169, 83 (1938)

159

__

0)O

- -64.0 x 10

2.0

I,,

150 200 250 300 350 400

T°K

Vd2. Temperature variation of the recombinationcoefficient in oxygen at constant pressure.

M. E. Gardner, Phys. Rev. 53, 75 (1938)

160

w

o0II

�l

I. .

VI. BREAKDOWN

(a) High-Frequency Breakdown

In microwave breakdown the rate of production of electrons, nvi, is balanced by the

rate of diffusion, nD/AZ, out of the tube whose diffusion length is A. The ionization

frequency v i is a function of the effective electric field:

E Z 22 =P VcEe 2 2 2 (1)v +W

c

The proper variables in which to express breakdown are the voltage EeA and the para-

meter pA.

At lower frequencies the amplitude of oscillation of the electrons brings them in con-

tact with the walls, leading either to their capture by the walls or to secondary emission.

These phenomena lead to discontinuities in breakdown fields.

(b) Direct-Current Breakdown

Direct-current breakdown occurs by avalanche multiplication, renewed by secondary

electrons from the cathode. The breakdown voltage VB is given by

i(VB -VA) = n( - l/y) (2)

where VA is an initial voltage necessary to give the electrons their mean energy. The

breakdown voltage is a function of the product pd.

At high pressures and nonplanar geometry, space charge will intensify the fields;

and secondary electrons may originate from photo-emission in the gas. Breakdown then

occurs by streamer formation (spark) and is given by

N = e = 38r EDd (3)c o e

(c) Time Lags

The formative time lag tf is the time necessary for the initial current I that exists

before breakdown to build up to an observable current I 1.

For the Townsend mechanism:

log [(m-l) I1/Io]tf = ti log M t+ (4)

where t+ is the transit time for the slowest particle (ion or electron) and the multiplica-

tion factor M has the value M = y(e V _ 1).

For spark breakdown:

log Ntf- a E t (5)

161

H2AIRC02I

pd(MM-MM Hg)

VIal. Paschen curves for various gases.

M. Knoll, F. Ollendorff, R. Rompe, Gasentladungstabellen(Springer Verlag, Berlin, 1935), p. 84

162

I

0

C0

Lu

D0

48 72 96 120 144p

8(MMx CM)

VIaZ. Breakdown potential for argon as a function of

F. Ehrenkranz, Phys. Rev. 55, 219 (1939)

50

40

(n 30

0

20

U

0

0

0,O

uVV

0 5 10

p8 (MMxCM)

VI a2. Breakdown potential for argon as a function

F. Ehrenkranz, Phys. Rev. 55, 219 (1939)

p6 for Pt and Na electrodes.

15 20

of p6 for Pt and Na electrodes.

163

240C

2000

1600

°1200

800

40f

I-

Pt

X/ Na

--z2,0 24 168 192 216 240

P ta

/N _

�75��

55�4

c--L

1-1

VX

L L

4

7

- -

_ I

_ __

,J1�

(n~o

(UUU

6000

5000

4000

3000

2000

1000

0 40 80 120 160 Z00 240

p8 (MM xCM)

280 320 360

VIa3. Breakdown potential for hydrogen as a function of p5 for Pt and Na electrodes.

F. Ehrenkranz, Phys. Rev. 55, 219 (1939)

I - -

8(

61

> 4

nn

00

00

200

0 5 10 15P (MM x CM)

VIa3. Breakdown potential for hydrogen asfor Pt and Na electrodes.

F. Ehrenkranz, Phys. Rev. 55, 219

20

a function of p6

(1939)

164

Pt

;z Na;L,.

Pt

/1N a

L-

iz

�71

I;

..- l

~J .~- .------.- .

--n-n-UUU

A _ _

IUU

ZZ

- I

1500

1200

(-J u

0

600

300

U 5 10 15 20ps (MM xCM)

VIa4. Breakdown potential in nitrogen as a function of p8for Pt and Na electrodes.

F. Ehrenkranz, Phys. Rev. 55, 219 (1939)

I-

>

IbUUU

14000

12000

10000

8000

6000

4000

nw

0 40 80 120 160 200 240

p8

(MM x CM)

VIa4. Breakdown potential in nitrogenfor Pt and Na electrodes.

F. Ehrenkranz, Phys. Rev. 55,

280

as a

219

320

function of p6

(1939)

165

Pt

-

Na

.

7- 7-

I

-11

F;

;I-77

XII

- -- - - ---- �-

A -- . --

:nV

I,

E2Ii

i HuK111

I I I I1 I I I 1 I I

I II Il I I I I II1

0.01 0.04 0.1 0.4 IELECTRODE SEPARATION (CM)

VIa5. Breakdown voltage in air at atmospheric pressure.

M. Knoll, F. Ollendorff, R. Rompe, Gasentladungstabellen(Springer Verlag, Berlin, 1935), p. 83

166

13 01

,I ,I CA\j

I\ I III

1..1111I I II IV I

I nlI .lVol

I I III9C

80

70

6C

5C

4C

50U)

-J00

.J1LU

0

0UI-i

CxJ 4 10

····~~~~~~~~~~~~~~~~~~~~

I 1 1111l l l li -t-

IIEE=i

l l l 'l &-

EEII= -l l l 'l ---- [----4 I I I 1�

I III-

- I I 11

-- I U11 -f\

"II I 1

unn_-P I I I II P 1111 I+ffff

;I - ,

I

I Jl I

I ' I

III

'

I

II

I

) \

\

I

I

I

7r-·)V

For

0

VIb . High-frequency

E. W. B. Gill,

40 80 120 160 200X(M)

breakdown in neon.

A. von Engel, Proc. Roy. Soc. (London) A197, 107 (1949)

40 80 120

X(M)

160 200

VIb2. High-frequency

E. W. B. Gill,

breakdown in hydrogen.

A. von Engel, Proc. Roy. Soc. (London) A197, 107 (1949)

167

3DU

300

250

2002

(/3

I-..J0c>

.w

150

100

50

0240

_

ra

-A A

400

300

0

cn

J 2000

W

100

nU 40

VIb3. High-frequency

E. W. B. Gill,

24080 120 160 200

X (M)

breakdown in nitrogen.

A. von Engel, Proc. Roy. Soc. (London) A197, 107 (1949)

8 12 16WAVE LENGTH (METERS)

20 24 28

VIb4. Low-pressure,

E. W. B. Gill,

high-frequency breakdown in hydrogen.

A. von Engel, Proc. Roy. Soc. (London) A192, 446 (1948)

168

0

0

1033CM

00 3-

0 3- _

6(

34

>-2

,, 2

II

4

iI

'AA

pA (CM-MM Hg)

VIb5. Microwave breakdown in gases.

S. C. Brown, Handbuch der Physik (Springer Verlag, Berlin, 1956),Vol. 22, p. 535

169

Si

0

LuJ

300

cn

o(I)0zo0(I)0Cr05;z

0-J9g

% OVERVOLTAGE

VIcl 1. Formative time lag for breakdown in air at low overvoltages.

L. H. Fisher, B. Bederson, Phys. Rev. 81, 109 (1951)

I",

0

C)

-j

2

W

L3

-j

APPLIED FIELD(KV/CM)

VIc2. Formative time lag for breakdown in air at high overvoltages.

R. C. Fletcher, Phys. Rev. 76, 1501 (1949)

170

i I

VII ELECTRON ENERGIES

171

_ L �·

3 10 30 100 300 1000E/p (VOLTS/CM/MM Hg)

VIIal. Distribution of electron energy losses in neon.

F. M. Penning, Physica 4, 286 (1938)

N I I.\ ELASTIC

I/,

//

//

y/\

\

3

\ ELECTRONIC\ EXCITATION

IONIZATION -

,/'- KINETIC- ENERGY

I10 30 100 300 1000

E/p (VOLTS/CM/MM Hg)

VIIa2. Distribution of electron energy losses in argon.

F. M. Penning, Physica 4, 286 (1938)

172

100%

80%

60%

40%

20%

,ELASTIC

/ \ ELECTRONICx EXCITATION

,t~ ~0~ --IONIZAT ONI/I'

I ___KINET I

_. __~.. _ENERGY'o/

" '0.1 0.3

100%

80

60

40

20

00. 0.3

I. - __1

11.1 _-

___1

. , i I

.1 I

0

aol

Ee/p VOLTS/CM MM Hg

VIIa3. Various power losses of an electron in a microwavedischarge in helium, in percentage of input power.

F. H. Reder, S. C. Brown, Phys. Rev. 95, 885 (1954)

Ino

ID

z

0z

IL

1.0

XC ITATION

0.6 /

0.4

02\

RECOIL IONZT N

n DA~~~~~~~~~iD~~~N

V 10 20 30

E /p(VOLTS/CM MM)

40 50

VII a4. Fractional energy loss in H.

173

--

aA1

. r(cm) 2.05=R

VIIbl. Electron temperature and gas temperature of a dischargeas a function of tube radius.

W. Elenbaas, The High Pressure Mercury Vapour Discharge(North Holland Publishing Company, Amsterdam, 1951), p. 40

174

3

OK

l

VIII CATHODE PHENOMENA

Sputtering yield = S/(1+y) atoms per ion

S = 10 5 W/(AI+t)

W = loss of weight in grams

A = atomic weight

I+ = ion current in amperes

t = time of bombardment in seconds

y = second Townsend coefficient

175

_ _

VIII (al). Normal Cathode Fall in Volts

Cathode Air

Al

Ag

Au

Ba

Bi

C

Ca

Cd

Co

Cu

Fe

Hg

Ir

K

Mo

Mg

Na

Ni

Pb

Pd

Pt

Sb

Sn

Sr

Th

W

Zn

229

280

285

272

266

380

370

269

380

180

224

200

226

207

421

277

269

266

A He H 2

100 140 170

130 162 216

130 165 247

93

136

86

137

93 86

119 167

130 177

165 150

142

240

240

Hg

245

318

Ne N 2

120 180

150 233

158 233

157

210

02

311

475

CO CO 2 C1

525

86 157

160 213200

214 447

250 298

340

64 59 94

119 125

80

131 158

124 177

131

136

124

93

153

185

211

223

165 276

252

226

86

220 208

150 215

226

68

353 115

94

75

275 140

172

170

188

178

197

210

340 152 216

225

216

157

125

305 125

277 119 143 184

484 460

290

484 460

310

364 490 475 275

216 354 480 410

176

`9

VIII (a2). Normal Cathode Fall Thickness(dnP in cm-mm Hg at room temperature)

Cathode Air A H2 He Hg N2 Ne 02

0.25 0.29 0.72

0.9

0.87

0.23 0.8

0.52 0.33 0.9

0.61

0.9

0.9

0.84

1.0

0.8

0

cr

z

0

9ID

z

0

ID

1.32 0.33

0.69

1.30

1.45

0.6

0.34

0.31 0.64 0.24

0.42

0.35

0.72 0.31

0.25

0.4

CATHODE POTENTIAL DROP AND INITIAL ELECTRONENERGY (VOLTS)

VIIIa3. Length of negative glow and range of electrons.

J. D. Cobine, Gaseous Conductors (McGraw-Hill, N. Y., 1941), p. 220

177

Al

C

Cd

Cu

Fe

Mg

Hg

Ni

Pb

Pt

Zn

_ __ __

Y

zO

VIII (a4). Normal Cathode Current Density in a Glow Discharge(plamp/cm2 X mm2 of Hg at room temperature)

Cathode Air A H2 He Hg N 2 02

90

110

64

72 2.2

3

90 5

10C323 5 10-2 10- I

C2 7p2

4

15

8 400 6

5

380 550 18

10 100 1000

VIIIa4. Anomalous cathode fall.

A. von Engel, M. Steenbeck, Elektrische Gasentladungen (SpringerVerlag, Berlin, 1932), Vol. II, p. 73

VIII(bl). Sputtered Mass in Micrograms Per Ampere-Second For

Metals in Hydrogen

Mg

Ta

Cr

Al

Cd

Mn

2. 5

4. 5

7. 5

8

8. 9

11

Mo

Co

W

Ni

Fe

Sn

16

16

16

18

19

55

C 73

Cu

Zn

Pb

Au

Ag

84

95

110

130

205

178

330

570

240

160

20

150

Ne

Al

Au

Cu

Fe

Mg

Pt

cU

-

t0z

rr

L_-LU

'2

Io

VIIIbl. Current ratio curves versus reciprocal of emissive energy.correction for back diffusion for inert gases.

J. K. Theobald, J. Appl. Phys. 24, 123 (1953)

en

0

o;0

o0UJ O.-J

U vU.U .I U. I

Curves permit

U.

I

I-

VIIIbZ. Current ratio curves versus reciprocal of emissive energy.correction for back diffusion for molecular gases.

J. K. Theobald, J. Appl. Phys. 24, 123 (1953)

Curves permit

179

_ __ �I

to

z

U)

0'cn

0

w-j

ION ENERGY (VOLTS)0

VIIIcl. Sputtering yields of Cu and Fe.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

GERMANIUM0.7 - _

0.6

0.5

0.4

0.3 _

0.2 ___ ___ _

0 20 40 60 80 100 120SAMPLE VOLTAGE

VIIIcZ. Rate of sputtering from argon positive ion bombardmentversus voltage for germanium.

S. P. Wolsky, Phys. Rev. 108, 1131 (1957)

180

0.8x1

m

0_o

zcr

I,

0LLI

B

0.9 x 10-3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0. I

0 0SAMPLE VOLTAGE

VIIIc2. Rate of sputtering from-argon positive ion bombardmentversus voltage for germanium.

S. P. Wolsky, Phys. Rev. 108, 1131 (1957)

z

o)

0

-t

J

O.

07

0.6

0.5Ge

04 _ /_

0.3

02 _ _

0.' _ _ __ _ _

50 100 150 200 250 300 350 400 450 500

ION ENERGY (VOLTS)

VIIIcZ. Sputtering yields of Ge and graphite.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

181

zFtIL

Co.

LL0

I-

- -

v

ION ENERGY (VOLTS)

VIIIc3. Sputtering yields of Ni and Hf.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

zOC

o(rCc_FZ

'u ItVV IUV CJU I UjVV JuV tUV lU U UV

ION ENERGY (VOLTS)

VIIIc4. Sputtering yields of Ag and Ti.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

182

Pm

,n

0.8X10O- 3

co- J

00

CDz

Z)

0-HD(IL0

Ow

0.6

0.4

0.2

0SAMPLE VOLTAGE

VIIIc5. Rate of sputtering from argon positive ion bombardmentversus voltage for silicon.

S. P. Wolsky, Phys. Rev. 108, 1131 (1957)

z0

(I

n

>-c:

ION ENERGY(VOLTS)

VIIIc5. Sputtering yields of Si and Cr.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

183

_

1.3

1.2

1.1 --

0 .

0.9

0.8I/A

0.6

0.5

0.34

0.2 _

0.1

n /50 100 150 200 250 300 350 400 450 500

ION ENERGY (VOLTS)

VIlIc6. Sputtering yields of Au and Al.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

I n

50 100 150 200 250 300 350 400 450 500ION ENERGY (VOLTS)

VIIIc7. Sputtering yields of Ir and Nb.G. K. Wehner, Phys. Rev. 108, 35 (1957)

184

z

c)I0o

-Jw

4

z

(I)

0I-

0-jLi

0.9

0.8

0.7

05 -

044 Ir

0.3 ,,_Nb

0.2

0.1

) /'

-I-

ION ENERGY (VOLTS)

VIIIc8. Sputtering yields of Th and Mo.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

zo

op-

>-

U.b k

07

06

0.5 - - /,Re

04 ____

w/0.3

0.2

0.1

r /v 50 100 150 200 250 300 50 400 450 S)U

ION ENERGY (VOLTS)

VIIIc9. Sputtering yields of Re and W.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

185

·-

Z (o

c

-C

C

I.1

1.0

:).9

).6Pd

).5

).4 / "

).5 /

I I I50 I00 150 200 20 300 50 400 4'+ 500

ION ENERGY (VOLTS)

VIIIclO. Sputtering yields of Co and Pd.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

JUV IVUU IJU CLUU J cU UU O)JU 1VVUU 1U d;VV

ION ENERGY (VOLTS)

VIIIc 1. Sputtering yields of Pt and V.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

186

r

TOI

I

V

O.

O.

O.

zo:z: 0.U)

o0o

-Jw>- 0.

r

Uf

06

05

04

.03

02

r lI

n

25 50 75 100 125

ION ENERGY (VOLTS)

VIlIcl2. Sputtering yields of W in region of low energy.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

O.70.6- _

Rh0.5

0.2

50 I00 150 200 250 300 350 400 450 500

ION ENERGY (VOLTS)

VIIc 13. Sputtering yields of Rh and Zr.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

187

W

z

to

0o-ri

"I r .-.

1

z

Sovv.

7

V.Vl

V

z

()

0

-1IJ

I.U

0.9

0.8

0.7

0.6

0.5

0.4

0.

0.1

DU IUU IDU ZUU DU UU ODU + UU

ION ENERGY (VOLTS)450 500

VIHIcl4. Sputtering yields of U and Ta.

G. K. Wehner, Phys. Rev. 108, 35 (1957)

188

U

-2

I

--I

� 7-

I r

IE -- / --- j~F -- -- - - --- - -

I- - -- -

--- -- --

r ·

l Ra

.s

/

U-- -- - -- _ __ _ __-- - I - -- A_ _ - - AC .1_ _ _ _ .