Ballistic Reinforced Satellite (BRICSat) · PDF filekenji.dinelli@gmail.com . X-WING...

Post on 13-Mar-2018

213 views 1 download

Transcript of Ballistic Reinforced Satellite (BRICSat) · PDF filekenji.dinelli@gmail.com . X-WING...

1

kenji.dinelli@gmail.com

WHAT IS A CUBESAT?

• Miniaturized satellites classified according to height (10-30 cm)

• Purpose is to perform small spacecraft experiments.

• Use has increased due to relatively low cost

2

DragonSat-1 (1U CubeSat)

kenji.dinelli@gmail.com

PROBLEM STATEMENT

3

CubeSat missions are becoming more important

Missions are reliant on launch vehicle locations

Limited control on the CubeSat’s orbital altitude

Need better attitude control systems

Feasible propulsion system is needed to increase mission capability

kenji.dinelli@gmail.com

PAST MICROPROPULSION SYSTEMS

Characteristics Nominal Values

Specific impulse (sec) 220

Thrust (N) 1

Thruster Mass with Valve (g) 290

Propellant Hydrazine (N2H4)

Accumulated Burn Life (hours) 50

4

1 N Hydrazine Thruster

kenji.dinelli@gmail.com

ALTERNATIVE OPTION

• Electric Propulsion (EP) provides an option – Specific impulse values up to 5,000 seconds – Thrust duration lasts from weeks to years – Xenon and Teflon are common propellants

• Problems: – Require large amounts of power (>~300 W) – Take up about half of payload volume and mass of

1U to 3U CubeSats

5

kenji.dinelli@gmail.com

MICRO-CATHODE ARC THRUSTERS

6

Micro-cathode Thruster Heads

Characteristics Nominal Values

Specific impulse (sec) 3000

Thrust (N) 1µN

Thruster System Mass (g)

200

Propellant Titanium cathode

Average Power (W) 0.1

Thruster System Volume (cm3)

200

Delta-V (for 4 kg satellite) (m/s)

300

kenji.dinelli@gmail.com

MISSION AND OBJECTIVES

• Mission: Collaborate with The George Washington University to successfully demonstrate an electric propulsion system in orbit for application to CubeSat missions

• Primary objectives: – Integrate a miniature size propulsion system into a

1.5U CubeSat – Perform three maneuvers in space: de-tumbling,

pointing control, and delta-V • Secondary objective is to expand APRS network

7

kenji.dinelli@gmail.com

CONCEPT OF OPERATIONS

• Will fire up to four thrusters

• Perform three key maneuvers: – Initial De-tumbling – Controlled spin about

two axes – Delta-V Operation

• Gyro and magnetometer used for measurements

8

Thruster Firing and Rotation

Z

X -Y

kenji.dinelli@gmail.com

MISSION PLAN

9

BRICSat-P Mission Flow Chart

kenji.dinelli@gmail.com

SUCCESS CRITERIA

10

Criteria Attainable

The thrusters can successfully fire.

BRICSat-P can de-tumble successfully

BRICSat-P can spin and de-spin in a stable manner.

Enough power is available to perform successful Delta-V maneuver.

The process can be repeated.

kenji.dinelli@gmail.com

Satellite Overview

Specifications Values

Size 1.5 U

Mass (kg) 1.9

Volume (cm3) 1500

Antenna Lengths (cm) HF-182.88 VHF-48.26 UHF-15.24

Number of Thruster Systems

4

11

INTEGRATION AND MISSION ANALYSIS

USNA TEAM

12 kenji.dinelli@gmail.com

kenji.dinelli@gmail.com

BRICSAT-P DESIGN PROGRESSION

• Place four thruster heads around center of mass

• Permanent magnet to stabilize CubeSat

• Intermediate Design: – Integrate four full

thruster systems into BRICSat-P

– Power unit changed from 1.5U to 1U

– Thruster systems placed on y-axis plane

13 Initial Design with Thruster Placement

2 1 4

X Y

Z

3

kenji.dinelli@gmail.com

ATTITUDE DYNAMICS AND CONTROL

• MATLAB Simulink model – Simulate effects of

aerodynamic drag, magnetic field, and gravity gradient torque

– Permanent magnet de-tumbling analyzed

– Incapable of de-tumbling spacecraft

14

0 0.5 1 1.5 2 2.5 3

x 104

-20

-15

-10

-5

0

5

10

15

20

time(s)

wB

ody

(deg

/sec

)

x-axisy-axisz-axis

Failed Magnetic Stabilization

kenji.dinelli@gmail.com

FINAL DESIGN CONSIDERATION

15

X-Wing Configuration

• Use thrusters for attitude and rate control – Meets all of mission

objectives – Fully characterize

thruster system • Two possible thruster

configurations: – Staggered (2 thrusters

on opposite face) – X-wing (all thrusters

on same face)

Staggered Configuration

kenji.dinelli@gmail.com

THRUSTER CONFIGURATION

• Staggered configuration is only one orbit faster.

• X-wing configuration was chosen: – Less complicated

mechanically – Makes delta-V

scenario more feasible – Can de-tumble within

7 orbits

16 Subsystem Layout

Z

Y X

kenji.dinelli@gmail.com

DE-TUMBLING GOALS

• Determine appropriate thruster configuration based on: – Initial Tumbling: 15 deg/sec – Target stability: +/- 1 deg/sec

• Determine the exact placement of thrusters – Fewest number of orbits to stabilize

• Determine duty cycle for thruster firing.

17

kenji.dinelli@gmail.com

X-WING CONFIGURATION

18

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

0 1 2 3 4 5 6

Detu

mbl

ing

Tim

e (o

rbits

)

Thruster Separation (cm)

Composite Stability

0 2 4 6 8 10 12 14

x 104

-25

-20

-15

-10

-5

0

5

10

15

20

25

time(s)

wB

ody (

deg/s

ec)

Thruster Detumbling

x-axisy-axisz-axis

Satellite can successfully stabilize from initial tumbling in 7 orbits!

kenji.dinelli@gmail.com

ALTERING INITIAL CONDITIONS

19

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

0 1 2 3 4 5 6De

tum

blin

g Ti

me

(orb

its)

Thruster Separation (cm)

50% Duty Cycle

0 0.5 1 1.5 2 2.5 3

x 104

-25

-20

-15

-10

-5

0

5

10

15

20

25

X: 1.123e+04Y: 0.9968

time(s)

wB

ody

(deg

/sec

)

Thruster Detumbling

x-axisy-axisz-axis

Altering Inertia Tensor

Mass distribution and duty cycle affect thruster’s performance in rotation control mode.

kenji.dinelli@gmail.com

FINAL DESIGN PARAMETERS

Configuration X-wing

Placement -Y Face

Separation (cm) 4.5

Duty Cycle (%) 50

Misalignment Tolerance 5 degrees 2 mm

20

kenji.dinelli@gmail.com

ROTATIONAL EXPERIMENT

• Target rotation rate of 6 rpm • 22% duty cycle

– 10 minutes to spin – 70 minutes of rest – 10 minutes to de-spin

• Camera will take pictures of thrusters • Communications sent to USNA ground station

21

kenji.dinelli@gmail.com

DELTA-V SCENARIO

• Magnetometer for CubeSat orientation – Based on magnetic field orientation – Can identify orientation in two axes planes

• Fire 4 thrusters along Earth’s magnetic field line • Send pictures of thruster firing • Modeled in MATLAB Simulink and STK

22

kenji.dinelli@gmail.com

SOLAR POWER ESTIMATES

• Power Predictions: – Worst case scenario: 2.04W – Best Case: 4.34W – Orbit Average Power: 3.25W

• Thruster power requirements: 1 Watt – Power required is based on continuous firing

23

Triangular Advanced Solar Cells (TASC)

PAYLOAD DESIGN GW TEAM

24

kenji.dinelli@gmail.com

PAYLOAD OVERVIEW

25

Propulsion System Overview

Thruster Head

Power Processing Unit

Inductors

Thruster Head Thruster Controller

kenji.dinelli@gmail.com

THRUSTER SPECIFICATIONS

Diameter (cm) 1

Length (cm) 2.29

Backflux None

Operational Life (years) 10

Total Impulse (N-sec) 120,000

Input Voltage (VDC) 5

26

Thruster Spark in Live Fire Test

Final Thruster Boards

kenji.dinelli@gmail.com

FUTURE SCHEDULE

Final Testing

Delivery

Launch

Begin Operations

Collect and Analyze Data

27

kenji.dinelli@gmail.com

CONCLUSION

Criteria Attainable

The thrusters can successfully fire.

BRICSat-P can de-tumble successfully

BRICSat-P can spin and de-spin in a stable manner.

Enough power is available to perform successful Delta-V maneuver.

The process can be repeated. ✓

28

kenji.dinelli@gmail.com

REFERENCES • Jahn, Robert G. Physics of electric propulsion. McGraw-Hill, New

York, 1968. • M. Keidar, S. Haque, T. Zhuang, A. Shashurin, D. Chiu, G. Teel, E.

Agasid, O. Tintore, E. Uribe, Micro-Cathode Arc Thruster for PhoneSat Propulsion, 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT. Paper # SSC13-VII-9.

• M. Keidar, S. Haque, G. Teel, E. Agasid, O. Gazulla, A. Perez, G. Trinh, E. Uribe, Micro Cathode Arc Thruster PhoneSat Experiment for Small Satellites, 33rd International Electric Propulsion Conference, IEPC-2013-409.

• https://www.mpnl.seas.gwu.edu/index.php?option=com_content&view=article&id=49&catid=16&Itemid=124

• http://heraeuscatalysts.com/en/catalystschemical/catalystsspecial/catalystsspecialforhydrazinedecomposition/catalysts_special_for_hydrazine_decomposition.aspx.

29

kenji.dinelli@gmail.com

REFERENCES

• http://cs.astrium.eads.net/sp/spacecraft-propulsion/hydrazine-thrusters/1n-thruster.html

• Sutton, George. Rocket propulsion elements. Hoboken, N.J: Wiley, 2010.

• Goebel, Dan M. and Katz, Ira. Fundamentals of Electric Propulsion. Hoboken, N.J: Wiley, 2008.

30

kenji.dinelli@gmail.com

QUESTIONS?

31

Christopher K Dinelli kenji.dinelli@gmail.com