Baeyer-Villiger Rearrangement

Post on 13-Jun-2015

349 views 2 download

Tags:

description

Power Point presentation

Transcript of Baeyer-Villiger Rearrangement

Substituent Effects in the Migration Step of the Baeyer-Villiger Rearrangement. A Theoretical Study

Lino Reyes*, Miguel Castro, Julián Cruz, Manuel Rubio

J. Phys. Chem. A 2005, 109, 3383 - 3390

Relaciones de energía libreDr. Lino Reyes

Alumna: Martha Buschbeck

La reacción de Baeyer-Villiger

C

O

R R'

+ CPh O

O

OH

C

O

R OR'

C

O

R R'

H+

C+

OH

R R'

CPh O

O

OH

C

R'

R

O

HO

O

C Ph

O

C+

R

O

HO

R'H+

C

R

OR'

O

Antecedentes

Mecanismo de la reacción

Marcaje isotópico

Migración competitiva: Cetonas asimétricas

Preferencia de sustituyentes secundarios o terciarios sobre grupo metilo para la migración. (Doering)

Carga positiva en el carbono que migra se rearreglan más rápidamente.

Sustituyentes con grupos electrodonadores en para (MeO, Me) > fenilos

Sustituyentes electroatractores en para (Cl, Br, NO2) favorecen la migración del fenilo.

Capacidad migratoria de grupos arilo para-sustituidos: p-MeO-Ar > p-Me-Ar > p-Cl-Ar > p-Br-Ar > p-NO2-Ar alquilos terciarios > ciclohexilo > alquilos secundarios > bencilo >

fenilo > alquilos primarios > ciclopentilo, ciclopropilo > metilo

Al conjugarse el grupo carbonilo con un sustituyente, la reactividad de la cetona a la Rx. B-V disminuye la

capacidad migratoria de los sustituyentes no influye en la k

S. L. Friess, N. Farnham, J. Am. Chem. Soc. 1950, 72, 5518 – 5521.

Cinética de la reacción

La formación del intermediario de Criegee es el paso lento de la reacción (Friess y Soloway)

El rearreglo del intermediario de Criegee es el paso lento de la reacción (Hawthorne y Emmons)

Si se considera únicamente a la p-metoxiacetofenona, el paso determinante es la adición (Krow)

Efecto cinético isotópico:Palmer y Fry

Palmer y Fry: Reacción concertada, la migración es el paso determinante de la reacción. Grupos muy electrodonadores enmascaran el efecto del sustituyente (-OMe).

Ogata y Sawaki: Atribuyen estos resultados a un cambio en el paso determinante de la reacción.

Resultados

Sistemas estudiados:a. Intermediario de Criegeeb. Estado de transición del rearreglo de B-V

Geometrías

NAP Distribución de carga y Variaciones del potencial

electrostático (kcal/mol): rojo, más negativo que -30

azul, más positivo que 50

E a nivel B3LYP/6-31G** vs. el parámetro de Hammett σ+

E = 14.07 + 3.80+; (n = 5, r = 0.998)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

11

12

13

14

15

16

17

+

E (

kcal

/mol

)

Y = 14.07 + 3.80 * XR= -0.998N= 5CH

3O

CH3

H

Cl

CN

Un mejor ajuste con σ+ que con σ, sugiere un complejo activado que puede estabilizarse a través de un sustituyente electrodonador en posición para. Esto en concordancia con lo sugerido por Ogata y Sawaki.

E a nivel B3LYP/6-31G** vs. la velocidad de la oxidación

Análisis de orbitales frontera

Transposición concertada y asincrónica.

El enlace O7-O4 se rompe anticipadamente respecto a la migración del grupo arilo.

Postulado de Hammond: El TS es más parecido al intermediario de Criegee que a los productos.

Órdenes de enlace

Evolución del orden de enlace en la ruptura del oxígeno vs migración del grupo arilo

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

O

xíge

no

Grupo arilo

CN Cl H CH3 OCH3

Evolución del orden de enlace en la migración del protón vs migración del grupo arilo

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Pro

tón

Grupo Arilo

CN Cl H CH3 OCH3

Orden de reacción: proceso de transposición concertado y asincrónico.

El enlace O7-O4 se rompe anticipadamente respecto a la migración del grupo arilo.

La separación de carga en el TS del rearreglo de acetofenonas para-sustituidas muestra su bajo carácter dipolar.

La desviación del derivado p-OCH3 al graficar las barreras energéticas de la migración vs. la velocidad de oxidación relativa, es consistente con el cambio en el paso determinante de la reacción de la migración del arilo a la adición del carbonilo.

Conclusiones