ATM OCN 100 Summer 2002 1 ATM OCN 100 - Spring 2002 LECTURE 20 (con’t.) THE THEORY OF WINDS: PART...

Post on 18-Jan-2016

213 views 0 download

Transcript of ATM OCN 100 Summer 2002 1 ATM OCN 100 - Spring 2002 LECTURE 20 (con’t.) THE THEORY OF WINDS: PART...

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 22

A 89 - 100AB 85 - 88B 75 - 84BC 69 - 74C 51 - 68D 40 - 50F < 39

Mean = 70

MADISON’S CURRENT WEATHERMADISON’S CURRENT WEATHER

Madison Weather at 1000 AM CDT 30 JUL 2002 Updated twice an hour at :05 and :25

Sky/Weather: SUNNY Temperature: 80 F (26 C) Dew Point: 69 F (20 C) Relative Humidity: 69% Wind: SW8 MPH Barometer: 30.00F (1015.9 mb)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 1515

Last 24 hrs in MadisonLast 24 hrs in Madison

                                                                                                                                                    

                

FOGFOG

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 1717

CURRENT CURRENT VISIBLEVISIBLE

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 1919

Current Surface Weather Map Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts and Radarwith Isobars (“iso” = equal & “bar” = weight), Fronts and Radar

Tight Isobar PackingTight Isobar Packing

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2020

Current Surface Winds Current Surface Winds with Streamlines & Isotachs (“iso” = equal & “tach” = speed)with Streamlines & Isotachs (“iso” = equal & “tach” = speed)

LL

LLHH

LL

LLLL

HH

LLHH

HHHH

LLLLHH

LL

Strong winds withStrong winds withTight Isobar PackingTight Isobar Packing

HHLL

LL

HH

HH

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2121

Current Temperatures (Current Temperatures (°°F) & IsothermsF) & Isotherms(“iso” = equal +”therm” = temperature)(“iso” = equal +”therm” = temperature)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2323

Current Dewpoints Current Dewpoints ((ooF) F)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2424

Tomorrow AM Forecast MapTomorrow AM Forecast Map

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2525

AnnouncementsAnnouncements

22ndnd Hour Exam has been returned. Hour Exam has been returned. See exam statistics on See exam statistics on

http://www.http://www.aosaos..wiscwisc..eduedu/~/~hopkinshopkins/aos100/exams/aos100/exams

Homework #4 also has been returned. Homework #4 also has been returned. Answer Key is posted atAnswer Key is posted athttp://www.aos.wisc.edu/~hopkins/aos100/homeworkhttp://www.aos.wisc.edu/~hopkins/aos100/homework

If you have ??, please see me.If you have ??, please see me.

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2727

ATM OCN 100 - Spring 2002 ATM OCN 100 - Spring 2002 LECTURE 20 LECTURE 20 (con’t.)(con’t.)

THE THEORY OF WINDS: THE THEORY OF WINDS: PART III - RESULTANT ATMOSPHERIC PART III - RESULTANT ATMOSPHERIC MOTIONS MOTIONS (con’t.)(con’t.)

A.A. Introduction & AssumptionsIntroduction & AssumptionsBuys-Ballot LawBuys-Ballot Law

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 2929

Buys Ballot RuleBuys Ballot Rule

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 3131

Current Midwest Weather PlotCurrent Midwest Weather Plot

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 3434

Current Midwest Weather AnalysisCurrent Midwest Weather Analysis

LL

HH

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 3838

GoalGoal

Attempt to develop simple models to Attempt to develop simple models to explain atmospheric motions explain atmospheric motions appearing on surface weather mapsappearing on surface weather maps

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 3939

ASSUMPTIONSASSUMPTIONS

For convenience, assume that:For convenience, assume that: Define motion in terms of Define motion in terms of

horizontal & vertical components. horizontal & vertical components. RationaleRationale::

– Winds are nearly horizontal;Winds are nearly horizontal;– Vertical motions typically much smaller.Vertical motions typically much smaller.

Make assumptions about the balance of forces:Make assumptions about the balance of forces:

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4040

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

MODELSMODELS

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4242

B. HORIZONTAL EQUATION OF B. HORIZONTAL EQUATION OF ATMOSPHERIC MOTIONATMOSPHERIC MOTION

The 3-D vector Equation of Atmospheric The 3-D vector Equation of Atmospheric Motion can be written in terms of horizontal Motion can be written in terms of horizontal and vertical components: and vertical components:

Net force = Net force = Horizontal Pressure gradient force Horizontal Pressure gradient force + Vertical Pressure gradient force + Vertical Pressure gradient force + gravity + Coriolis force + friction + gravity + Coriolis force + friction..

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4343

HYDROSTATIC BALANCE CONCEPTHYDROSTATIC BALANCE CONCEPT

A Fundamental Assumption:A Fundamental Assumption:

– Earth’s atmosphere remains and is Earth’s atmosphere remains and is essentially in “hydrostatic balance”.essentially in “hydrostatic balance”.

The Model –The Model –

– This balance is between the vertically This balance is between the vertically oriented vector quantities:oriented vector quantities:

– gravity, gravity, &&

– acceleration due to acceleration due to vertical component of vertical component of pressure gradient forcepressure gradient force..

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4444

Concept of Hydrostatic BalanceConcept of Hydrostatic BalanceFig. 9.11 Moran & Morgan (1997)Fig. 9.11 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4545

Components in Hydrostatic Balance ModelComponents in Hydrostatic Balance ModelFig. 9.11 Moran & Morgan (1997)Fig. 9.11 Moran & Morgan (1997)

Gravity Vector Direction:Gravity Vector Direction:“Down” toward Earth center“Down” toward Earth center Gravity Vector Magnitude:Gravity Vector Magnitude:

Decreases with altitude... Decreases with altitude... But But 9.8 m/s 9.8 m/s2 2 or 32 ft/sor 32 ft/s22

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4646

Components in Hydrostatic Balance ModelComponents in Hydrostatic Balance ModelFig. 9.11 Moran & Morgan (1997)Fig. 9.11 Moran & Morgan (1997)

Gravity Vector Direction:Gravity Vector Direction:“Down” toward Earth center“Down” toward Earth center Gravity Vector Magnitude:Gravity Vector Magnitude:

Decreases with altitude... Decreases with altitude... But But 9.8 m/s 9.8 m/s2 2 or 32 ft/sor 32 ft/s22

Vert. Press. Grad. Force Vert. Press. Grad. Force Vector Direction:Vector Direction:“Up” from High “Up” from High to Low Pressureto Low Pressure

Vert. Press. Grad. Force Vert. Press. Grad. Force Vector Magnitude:Vector Magnitude:

Depends upon Depends upon Vert. Pressure Grad. &Vert. Pressure Grad. &

DensityDensity

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 4747

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

MODELSMODELS

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 5555

HYDROSTATIC BALANCE CONCEPT HYDROSTATIC BALANCE CONCEPT (con’t.)(con’t.)

As a resultAs a result– The atmosphere is maintained;The atmosphere is maintained;– Convection is somewhat limited.Convection is somewhat limited.

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 5757

HORIZONTAL PRESSURE GRADIENT HORIZONTAL PRESSURE GRADIENT FORCEFORCE

Horiz. Press. Grad. ForceHoriz. Press. Grad. ForceVector Direction:Vector Direction:

High to Low & Perpendicular to the Isobars!

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 5858

HORIZONTAL PRESSURE GRADIENT FORCEHORIZONTAL PRESSURE GRADIENT FORCE (con’t.)(con’t.)

See Fig. 9.1 Moran & Morgan (1997)See Fig. 9.1 Moran & Morgan (1997)

Magnitude of Pressure Gradient Magnitude of Pressure Gradient depends on isobar spacing!depends on isobar spacing!

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 5959

As a Result of the HORIZONTAL As a Result of the HORIZONTAL PRESSURE GRADIENT FORCE PRESSURE GRADIENT FORCE (con’t.)(con’t.)

Horiz. Press. Grad. Force Horiz. Press. Grad. Force Vector Magnitude:Vector Magnitude:

Depends upon Depends upon Horiz. Pressure Gradient Horiz. Pressure Gradient

(i.e., isobar spacing)(i.e., isobar spacing)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6464

C. FLOW RESPONDING TO C. FLOW RESPONDING TO PRESSURE GRADIENT FORCE - PRESSURE GRADIENT FORCE -

LOCAL WINDSLOCAL WINDS

Assumptions:Assumptions:– Only Pressure gradient force operates due to Only Pressure gradient force operates due to

local pressure differences;local pressure differences;– Horizontal flow.Horizontal flow. Net force = pressure gradient forceNet force = pressure gradient force

Examples:Examples:– Sea-Land Breeze CirculationSea-Land Breeze Circulation– Mountain-Valley Breeze CirculationMountain-Valley Breeze Circulation– City-Country CirculationCity-Country Circulation

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6565

VERTICAL PRESSURE GRADIENTS - VERTICAL PRESSURE GRADIENTS - Dependency on density (temperature)Dependency on density (temperature)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6666

Sea-Land Breeze Circulation RegimeSea-Land Breeze Circulation RegimeFigure 12.2 Moran & Morgan (1997)Figure 12.2 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6767

Sea (Lake) BreezeSea (Lake) Breeze(Graphics from UIUC WW2010)(Graphics from UIUC WW2010)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6868

REASONS FOR LAND-SEA REASONS FOR LAND-SEA TEMPERATURE DIFFERENCESTEMPERATURE DIFFERENCES

Water has higher heat capacityWater has higher heat capacity– Smaller temperature response for heat addedSmaller temperature response for heat added

Water is a fluidWater is a fluid– Mixing warm water downwardMixing warm water downward

Water is transparentWater is transparent– Sunlight penetrates to depthSunlight penetrates to depth

Water surface experiences evaporationWater surface experiences evaporation– Evaporative coolingEvaporative cooling

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 6969

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7070

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7171

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7272

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7373

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7474

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

(Lake)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7575

Sea (Lake) BreezeSea (Lake) Breeze (con’t.)(con’t.)

See Fig. 12.2 A Moran & Morgan (1997)See Fig. 12.2 A Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7676

Lake Breeze Circulation over Lake MichiganLake Breeze Circulation over Lake MichiganFigure 12.3 Moran & Morgan (1997)Figure 12.3 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7777

Edge of lake breeze Edge of lake breeze on southern Lake Michiganon southern Lake Michigan Modis 21 May 2002Modis 21 May 2002

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7878

Land BreezeLand Breeze

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 7979

Land BreezeLand Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8080

Land BreezeLand Breeze (con’t.)(con’t.)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8181

Land BreezeLand Breeze (con’t.)(con’t.)

See Fig. 12.2 See Fig. 12.2 BB Moran & Morgan (1997) Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8282

Mountain BreezeMountain Breeze

See Fig. 12.14 Moran & Morgan (1997)See Fig. 12.14 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8383

Valley BreezeValley Breeze

See Fig. 12.14 Moran & Morgan (1997)See Fig. 12.14 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8484

D. STRAIGHT-LINE, BALANCED, D. STRAIGHT-LINE, BALANCED, FRICTIONLESS MOTIONFRICTIONLESS MOTION

- “GEOSTROPHIC FLOW” - “GEOSTROPHIC FLOW”

A powerful conceptual modelA powerful conceptual model involving horizontal motion on involving horizontal motion on rotating planet; rotating planet;

Background & Word Derivation:Background & Word Derivation:– Named by Sir Napier Shaw in 1916:Named by Sir Napier Shaw in 1916:

““Geo” = earth + “strephein” = to turn.Geo” = earth + “strephein” = to turn.

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8585

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

MODELSMODELS

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8787

““GEOSTROPHIC FLOW” GEOSTROPHIC FLOW” (con’t.)(con’t.)

AssumptionsAssumptions

Straight isobars

Parallel isobars

No friction

Horizontal flow

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8888

Geostrophic AdjustmentGeostrophic Adjustment See Fig. 9.12 Moran & Morgan (1997)See Fig. 9.12 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 8989

Geostrophic AdjustmentGeostrophic Adjustmenthttp://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fw/geos.rxmlhttp://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fw/geos.rxml

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9090

Geostrophic WindGeostrophic Wind See Fig. 9.12 Moran & Morgan (1997)See Fig. 9.12 Moran & Morgan (1997)

Represents a balance betweenRepresents a balance between

Horiz. Pressure Gradient ForceHoriz. Pressure Gradient Force

Horiz. Coriolis ForceHoriz. Coriolis Force

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9292

Geostrophic Wind VectorGeostrophic Wind Vector See Fig. 9.12 Moran & Morgan (1997)See Fig. 9.12 Moran & Morgan (1997)

Vector Direction:Vector Direction:•Parallels isobarsParallels isobars•LowLow to left in NH to left in NH

Vector Magnitude Vector Magnitude depends ondepends on::1. 1. Pressure GradientPressure Gradient2. 2. LatitudeLatitude

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9494

““GEOSTROPHIC FLOW” GEOSTROPHIC FLOW” (con’t.)(con’t.)

Implications of Geostrophic BalanceImplications of Geostrophic Balance– Geostrophic wind (VGeostrophic wind (Vgg) is:) is:

a hypothetical winda hypothetical wind a balance between a balance between

– horizontal pressure gradient horizontal pressure gradient (isobar spacing) (isobar spacing)

– latitude (latitude (oror Coriolis effect) Coriolis effect) DilemmaDilemma

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9595

Current Midwest Weather AnalysisCurrent Midwest Weather Analysis

LL

HH

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9696

E. BALANCED FLOW E. BALANCED FLOW in FRICTION LAYER in FRICTION LAYER

The Nature of FrictionThe Nature of Friction The Friction LayerThe Friction Layer The Effect of Friction upon the The Effect of Friction upon the

Geostrophic WindGeostrophic Wind AssumptionsAssumptions

– Same as for geostrophic wind case, Same as for geostrophic wind case, exceptexcept F FFriction Friction is is not not zero. zero.

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9797

Flow in Friction LayerFlow in Friction LayerSee Fig. 9.15 Moran & Morgan (1997)See Fig. 9.15 Moran & Morgan (1997)

FrictionFrictionSubgeostrophicSubgeostrophic

No FrictionNo FrictionGeostrophicGeostrophic

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 9898

Wind Vector in Friction LayerWind Vector in Friction LayerSee Fig. 9.15 Moran & Morgan (1997)See Fig. 9.15 Moran & Morgan (1997)

Vector Direction:Vector Direction:•Angles across isobarsAngles across isobars

•TowardToward Low Low in in either hemisphereeither hemisphere

Vector MagnitudeVector Magnitude1. 1. Depends on FrictionDepends on Friction2. 2. Less than Less than

Geostrophic WindGeostrophic Wind

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 100100

Buys Ballot RuleBuys Ballot Rule

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 101101

Observation:Observation:““Right with Height”Right with Height”

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 102102

Variation of Friction Effects with HeightVariation of Friction Effects with HeightSee Fig. 9.16 Moran & Morgan (1997)See Fig. 9.16 Moran & Morgan (1997)

NOTE: “Right with height”NOTE: “Right with height”

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 104104

Varying effects of Surface RoughnessVarying effects of Surface Roughness

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 105105

Variations in Surface Roughness leads Variations in Surface Roughness leads to divergence/convergence patternsto divergence/convergence patterns

See Fig. 9.22 Moran & Morgan (1997)See Fig. 9.22 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 107107

F. CURVED, HORIZONTAL BALANCED F. CURVED, HORIZONTAL BALANCED MOTIONMOTION - -

“GRADIENT FLOW” “GRADIENT FLOW”

AssumptionsAssumptions– Without FrictionWithout Friction

Two CasesTwo Cases

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 109109

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

MODELSMODELS

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 110110

““GRADIENT” FLOW: ANTICYCLONIC CaseGRADIENT” FLOW: ANTICYCLONIC CaseSee Fig. 9.13 Moran and Morgan (1997):See Fig. 9.13 Moran and Morgan (1997):

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 111111

““GRADIENT” FLOW: ANTICYCLONIC CaseGRADIENT” FLOW: ANTICYCLONIC CaseSee Fig. 9.13 Moran and Morgan (1997):See Fig. 9.13 Moran and Morgan (1997):

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 112112

““GRADIENT” FLOW: CYCLONIC CaseGRADIENT” FLOW: CYCLONIC Case See Fig. 9.14 Moran and Morgan (1997):See Fig. 9.14 Moran and Morgan (1997):

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 113113

““GRADIENT” FLOW: CYCLONIC CaseGRADIENT” FLOW: CYCLONIC Case See Fig. 9.14 Moran and Morgan (1997):See Fig. 9.14 Moran and Morgan (1997):

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 116116

G. GRADIENT FLOW WITH FRICTIONG. GRADIENT FLOW WITH FRICTION

Resultant flow with FrictionResultant flow with Friction F FCentripetalCentripetal = = FFPG,HPG,H + F + FCor Cor + F+ FFriction Friction

(A vector summation)(A vector summation)..

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 117117

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 118118

G. GRADIENT FLOW WITH FRICTIONG. GRADIENT FLOW WITH FRICTION

Resultant flow with FrictionResultant flow with Friction F FCentripetalCentripetal = = FFPG,HPG,H + F + FCor Cor + F+ FFriction Friction

(A vector summation)(A vector summation).. Applicability to the AtmosphereApplicability to the Atmosphere SituationSituation Resultant DiagramsResultant Diagrams

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 119119

Anticyclonic Flow in Friction LayerAnticyclonic Flow in Friction LayerFig. 9.17 Moran & Morgan (1997)Fig. 9.17 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 120120

Cyclonic Flow in Friction LayerCyclonic Flow in Friction LayerFig. 9.18 Moran & Morgan (1997)Fig. 9.18 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 121121

Near-Surface WindsNear-Surface Winds in each Hemispherein each Hemisphere See Figs. 9.17 & 9.18 Moran & Morgan (1997)See Figs. 9.17 & 9.18 Moran & Morgan (1997)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 122122

Summary of Forces for selected modelsSummary of Forces for selected modelsSee Table 9.1 Moran & Morgan (1997)See Table 9.1 Moran & Morgan (1997)

Forces Hydrostatic Equilibrium

Geostrophic Wind

Gradient Wind

Surface Winds

Pressure Gradient

Vertical X Horizontal X X X

Centripetal X X

Coriolis X X X

Friction X

Gravity X

MODELSMODELS

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 123123

H. RELATIONSHIPS BETWEEN H. RELATIONSHIPS BETWEEN HORIZONTAL HORIZONTAL && VERTICAL MOTIONS VERTICAL MOTIONS

DilemmaDilemma Convergence / DivergenceConvergence / Divergence Principle of Mass ContinuityPrinciple of Mass Continuity

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 124124

Features in a Surface Low Features in a Surface Low (Convergence & Ascent)(Convergence & Ascent)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 125125

Features in a Surface High Features in a Surface High (Sinking & Divergence)(Sinking & Divergence)

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 126126

H. RELATIONSHIPS BETWEEN H. RELATIONSHIPS BETWEEN HORIZONTAL HORIZONTAL && VERTICAL MOTIONS VERTICAL MOTIONS (con’t.)(con’t.)

Dines’ CompensationDines’ Compensation Resultant Vertical MotionsResultant Vertical Motions

Implications of Dines' CompensationImplications of Dines' Compensation

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 128128

I. VORTICES & VORTICITYI. VORTICES & VORTICITY

DefinitionsDefinitions Characteristic Vortex FeaturesCharacteristic Vortex Features

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 129129

VorticityVorticity

Types of VorticityTypes of Vorticity

Cyclonic VorticityCyclonic Vorticity

Anticyclonic VorticityAnticyclonic Vorticity

ATM OCN 100 Summer 2002ATM OCN 100 Summer 2002 130130

VorticityVorticity

Conservation of VorticityConservation of Vorticity