ASCE Utility Standards

Post on 13-Apr-2017

927 views 2 download

Transcript of ASCE Utility Standards

ASCE Utility Standards Jim Anspach, P.G. F.ASCE

Cardno, Inc. Director of Utility Market & Practice Development

Chair – ASCE 38 Member – Committee for Technical Advancement

Chair – CI Construction Standards Council

Member – Utility “As-Built” Standard

Chair – UESI Utility Risk Division

Member – PL Task Force

Chair (emeritus) – Codes and Standards Division

Board Governor: UESI

35+ Million Miles of Underground Utilities in the US and Counting

US MAJOR OIL & GAS TRANSMISSION PIPELINE NETWORK

Records for legacy utilities are not comprehensive nor detailed/accurate

enough for project engineering purposes

Since Time Immortal, Surveyors have been recording visible utility features

on project maps • Some utility record

investigation? • Connect the dots? • More recently, call One-

Call?

But, we don’t want to take responsibility for things we can’t see or measure

PLAN NOTES

1. Engineer and Surveyor take no responsibility for the accuracy and completeness of the utility information shown on these plans.

2. Utilities are depicted on these plans from records and visual observation. It is the responsibility of the contractor to verify all utilities before construction.

Incomplete and inaccurate maps of underground utilities between the structures lead to:

• Project construction surprises • Delays • Re-Design costs • Damages • Claims • Change Orders

Pre 1980 • One-Call just starting • Few devices for finding utilities • Few firms were mapping utilities • Utility Owners did “locating” for their own maintenance/repair

purposes • Finding Utilities was considered an “Art” or WITCHCRAFT

1979 How Deep is that Utility?

• WGL Lawyer told employees they could only say “It’s So Deep”

• Ford Bacon Davis used Vacuum Trucks for anode installation

• Where is that utility in the 8” X 8” hole?

1983 Media General Contract • Find and mark all

utilities • Expose all utilities in

road crossings

1984 VDOT Project

• $1M in savings reported to FHWA

• $7M in savings reported “off-the-record”

• Markings surveyed by VDOT survey crews

Significant Advances in SUE

• Integrated Survey (1985) • WGL Union Stoppage (1986) • MD WSSC “Seal” requirement (1987) • CNA PL Insurance (1988) • VDOT Court Case (1989) • OR – 1st Design Ticket (in lieu of records) • FHWA Road Trip and Trials (1991) • “SUE” Association Talks Begin (1995) • ASCE 38 started (1996)

UTILITY INVESTIGATION, LOCATION, & DEPICTION STANDARDS

?

Standard for the Collection, Administration, and Exchange of Utility Installation Information (Utility “As-Builts”)

FIND EXISTING UTILITIES DOCUMENT NEW UTILITIES

“Engineer shall show utilities…” Utility Investigations Vary:

> Records > Visual Correlations > Surface Geophysics > Exposures and

Certified Record Drawings

> Best Guess

But Depictions May Not: > Utilities all shown on

the design plans the same regardless of method of investigation.

• Outlines specific steps for the engineer / surveyor to take that result in increasingly better utility mapping.

• Utilities as mapped are shown according to their “Utility Quality Level” which allows all parties to make better risk decisions.

• Use of Utility Quality Levels protects engineers and surveyors

• Requires all utility mapping to be performed under the direct responsible charge of a registered professional, experienced in utility issues, surface geophysics, survey, and depiction methods

• Increasing usage across the country is increasing its importance in cases where standard of care is an issue.

ASCE 38 • Now referenced routinely in 40+ State DOTs • Best practice (FHWA, APWA, CGA, FAA, National

Academy of Science, and others) • Case Law increasing • Referenced as part of state statute in PA, MN • 2nd Best selling ACSE standard behind ASCE 7 • Update imminent • Used as basis for new standards in UK, NZ, Malaysia,

Canada, Australia, and Ecuador. • JUST IN: ASCE 38 NOW INCLUDED AS “BASIC SERVICE” IN EJCDC

ENG. DOCS

• To assist owners and engineers in developing an unambiguous comprehensive scope of work concerning collecting and depicting utility information on documents

• To standardize how utilities are portrayed on documents

• And most importantly, to standardize an attribute for utility information that indicates its reliability and quality (utility quality level attribute).

Purpose of the standard

• By Engineers – to make decisions on designing around existing utilities versus relocating them and to avoid redesign

• By Contractors – to determine construction bids and excavation methods

• By Project Owners – to retain a reliable map for future maintenance, security, or other needs

• By Courts – to allocate responsibility for errors and omissions and damages

These utility quality levels are used

A Utility Quality Level (QL):

• Is about the means and methods used by engineers to investigate and depict utility information on plans.

• There are four of them • When using them, engineers protect themselves against

negligence claims • They are risk and reliability-based; other stakeholders can

then use them to manage their project risks

• Plotted on plans from records. • Sometimes a field visit - to look for utility indications on the site - is made. • Sometimes “verbal recollections” are plotted.

This level of effort is great for Project Planning purposes, utility “inventories,” and very preliminary utility relocation cost estimates

The least reliable data “Quality Level D”

• Surface Appurtenances are surveyed and accurately plotted on a current site plan

• Utility data from records (QL D) are correlated to the appurtenances

“Quality Level C”

Problems with records interpretations still exist: e.g. schematics, no appurtenances depicted, utilities not straight between appurtenances, no records exist, and so on.

The “traditional” utility depiction

Curb

Edge of Paving on Water Records

Water Record says 4” pipe is two feet inside paving

WATER RECORD

Water Record says pipe is 2 feet inside paving, but

Valves are 12 feet inside curb

Surveyed & Plotted Water

Valves

Edge of Paving on Water Records

Here’s where the old edge of paving was

Surveyed & Plotted Water

Valves

Edge of Paving on Water Records can’t be determined using visual evidence today.

Here’s where the old edge of paving was?

Surveyed & Plotted Water

Valves

Engineer uses judgment to move water line 10 feet from where the records say it is to go through valves

What if they were gas valves? Or paved over? Or thought to be service valves?

Interpretation #2

Engineer responsible for judgment - ∆ of 10’

Surveyed & Plotted Water

Service Valves?

• Surface Geophysical Methods used to search for and trace existing utilities.

• Designated utilities are then surveyed and plotted on site plan.

“Quality Level B”

Non-recorded utilities found. Utilities’ routes between appurtenances are imaged. Typically used in early preliminary design for construction footprint decisions.

A significant upgrade in quality

Water Record says pipe is two feet off of curb.

Designating indicates otherwise.

QL D and QL C interpretations by engineer were significantly wrong

Abandoned section of water line

Unknown Non-recorded Utility

Different Geophysical Tools Used For QL B

Geophysics Analogy – Medical Imaging

• Most studied object in history

• Consists of widely different materials

• Research into imaging in the billions of dollars for CAT, Ultrasound, MRI, etc.

• Highly controlled imaging environment

• Great records

• No one method works for everything

• Exploratory surgery still common

• Highly trained interpreters of data

• Utilities exposed via non-destructive air-vacuum means • Exposed utilities are then surveyed and plotted on site plan

Elevations, Size, Condition, Materials, Precise Horizontal Positions are measured and documented

“Quality Level A”

Typically used in final design stages. Allows small adjustments in design for big savings in construction

A Guarantee in 3-D

Ground surface

Water line found at CL Station 23+40, L10 to be 6 3/4” in diameter and 5.56’ deep, slightly corroded and cast iron rather than ductile

Where to Dig?

Technology can’t overcome poor procedures Love Canal faux pas:

Test holes before Geophysics

• First six exploratory boreholes at Love Canal

• Geophysical map of the dump site

• ALL SIX HOLES MISSED THE TARGET!

The end result is a map suitable for current needs, and retrievable for future needs, with the reliability of the utilities clearly indicated

The total risk for the engineering pool decreases as quality level increases, while within the engineering pool, The risks shift towards the subsurface utility

engineer as quality levels trend towards QLA data

DESIGNENGINEER

Without SUE With SUE

TOTAL RISK

RISK ELIMINATED

SUEENGINEER

D C B ADEFINED QUALITY LEVELUNDEFINED QUALITY LEVEL

TOTAL ENGINEERING RISK POOL ALLOCATION OF RISK WITHIN ENGINEERING POOL

What else is in the standard?

• Responsibilities of the Engineer • Responsibilities of the Owner • Actions to achieve Utility Quality Levels • Depiction guidelines • Value statements • Appendix on Surface Geophysical Methods • Reference Documents

PLAN NOTES 1. Utilities are depicted on these plans in accordance with

their achieved “Utility Quality Levels” as defined in the latest version of ASCE 38 (Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data).

2. Reliance upon these data for risk management purposes during bidding does not relieve the excavator or utility owner from following all applicable utility damage prevention statutes, policies, and/or procedures during construction.

3. It is important that the constructor investigates and understands the utility mapping scope of work between the project owner and their engineer regarding the types of utilities to be depicted and the project limits leading to these utility depictions.

How do you achieve a utility quality level ?

Quality Level D: Plotting from record information

> Records research. How much? > Is calling the One-Call adequate? > Is a site visit necessary to look for utility

signs or appurtenances? > Do I need to plot everything for which

there is a record? (e.g. individual services, traffic control sensors?)

> What if there is an indication of a utility, but no record?

How do you achieve a utility quality level ? Quality Level C: Correlation of records to surveyed features / utility appurtenances

> Is using someone else’s survey of utility features OK?

> How many surveyed features are required to call a long run of utility Quality Level C?

> When does a Quality Level C line need to revert to Quality Level D?

> Do I need to plot everything for which there is a record? (e.g. individual services, traffic control sensors)

> What if there is an surveyed utility feature, but no record?

How do you achieve a utility quality level ? Quality Level B: Geophysics + Survey

> Is using someone else’s survey of utility marks OK?

> What geophysics should I use? > Do I search for a specific utility, or for

everything? > How do I handle signals that are unknowns? > How do I handle gaps in geophysical signals? > What level of effort do I need to go to if I can’t

find a utility of record? > Do I need to get into all the manholes and

vaults? > To what Accuracy am I held responsible?

How do you achieve a utility quality level ? Quality Level A: Exposure + Survey

> Does it matter what I use to excavate? > What if I don’t find anything? > How deep should I go? > What if I find something different than I

thought was there? > Can I trust someone else to survey my

patch and record the data? > Do I need to convert to an elevation? > To what accuracy am I held responsible? > Water vs. Air vacuum?

ASCE ACEC NSPE CSI NUCA ABA AWWA AIA CMAA ACSM WWEMA IMLA USDA XL VOSCO

Engineering Series Contracts Owner-Engineer Engineer – Sub-Consultant Engineer – Geotechnical Firm Engineer - Surveyor

3D Model of Existing Facilities

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery

Utility Line Profile View

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 87

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 88

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 89

Locations with QLA Data

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 90

Test hole Test hole Valve

Manhole

Assumed Curved Pipe Alignment

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 91

Test hole Test hole Valve

Manhole

Assumed Straight Pipe Alignment

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 92

Test hole Test hole Valve

Manhole

Assumed Horizontal Interpolation

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 93

Test hole Test hole Valve

Manhole

3D Model Including Utilities

94

ATTRIBUTES Quality Level Method of “z” value Starting elevation Ending elevation Size Material Owner Condition Age Pressure

3D Utility Visualization – Ireland

3D Mapping and Marking of Underground Utilities during Project Development and

Delivery 95

New Adventures Coming

• ASCE Utility “As-Built” Standard • New SHRP Tools • Utility Engineering and Surveying Institute

– SUE Training and Certifications – “Utility Engineer” Education – Utility Risk Envelopes

The Need for Utility As-Built Standardization Who Creates Utility Records?

• State DOT utility engineer • State DOT survey section

personnel • State DOT Property Department • Railroad Companies • DOT traffic Department • Design or Planning Consultant

hired by the state • Survey consultant hired by the

state • State One-Call Center • Utility company records personnel • Utility company engineering

personnel • State DOT maintenance personnel • Utility company “locators” • Utility company “contract locators”

• Private industry “private utility locators” • State construction inspectors • Utility company construction inspectors • State consultants for construction

inspection • Utility company consultants for

relocation design • State utility design or relocation

designers • Municipal engineers or their consultants • Municipal GIS departments • Federal Aviation Administration (FAA),

Corps of Engineers, military, industrial, and other utility owners

• Federal Highway Administration (FHWA) • Subsurface utility engineering

consultants

Locational references were tied to existing visible features like sides of roads or building edges or other utilities.

These visible features many times changed over time, and then these references were lost.

Accurate and precise location data are valuable, but the costs of acquiring and managing such data were historically out of reach

Why didn’t we accurately document utilities as they went in the ground?

We believed that the existing references (buildings, trees, road edges) would be in place forever.

We did not contemplate keeping these same utilities in service for the many years that we have.

We did not have technology that cost effectively allowed us to survey the utility locations to a more permanent datum.

The technology that we did have was expensive and limited to the use of highly trained and paid professionals

We did not contemplate the expensive and risky situations that digging into utilities would create.

Higher pressures and voltages, more fragile materials, and environmentally unfriendly products were not anticipated at the time of installation.

We could not imagine the cost of moving a utility as we needed more road space.

ASCE 38 deals with Legacy Data, mostly in the stages of Planning & Design within Project Development.

Standard for the Collection,

Administration, and Exchange of Utility Installation Information

(“As-Built” Records) This standard will deal with mostly new data, mostly in the construction stages of Project Development.

Utility As-Built Standard

> Overview > Background and Need > Scope > Committee Members > Committee Activities > Schedule

Planned Relocations of Utilities in Color; 95% of existing utilities (mapped using ASCE 38) will remain in place

Background

• Nearly all agencies granting permits mandate permittees (i.e., facility owners) to provide upon request “accurate” utility record information for permitted installations.

• Not all agencies, however, have a standard process for acquiring or a standard format for submitting the information.

Background

Accordingly utility records are largely: • at an inventory / schematic level • not tied to a common spatial datum • of inconsistent quality and content • in formats often incompatible for sharing or

referencing into CADD or viewing platforms commonly utilized by agencies in charge of granting easements and managing the properties through which these easements pass

Current As-Built Examples

What’s Changed? Population growth Public preference for buried cables Utility deregulation Rise in internet usage and dependence • e-commerce boom • cloud data management

Web Use

• eCommerce • Banking, Securities, Stocks • Business Ops (Accounting, email, file) • News, Entertainment, Social Networking • Telecommunications / Cellular Services • Advertisement / Marketing • GPS-Map / GIS Services • Education • Data Management Services

New Construction

> In U.S., over 50,000 miles of new gas pipeline per year due to shale gas

> In U.S., 250,000 miles of new tel-com cables per year > In U.S., 850,000 new houses in 2012 > In U.S., 6,500 miles of new road each year

Increasing Risk

The implications of poor utility records are far reaching and directly impact the public through: 1. rising risk and costs for civil projects and private

developments; 2. increased costs for utility infrastructure relocation

activities; 3. worker and public safety issues; and 4. disrupting public and commerce overwhelming

dependence on web services.

Increasing Congestion Utility congestion at problematic levels within public roadway corridors.

Finding this stuff by any means other than whole-scale excavation is challenging. It’s better to document it accurately as it is going in

Scope

Develop a new standard for the collection and submittal of utility “as-built” records and publish as an ASCE non-mandatory consensus standard. Stem from: • CI/ASCE 38 & CSA S250-11 • International Organization for Standardization (ISO) • Open Geospatial Consortium (OGC) • Federal Geographic Data Committee (FGDC) • American National Standards Institute (ANSI) • National Oceanic and Atmospheric Administration (NOAA) / National

Geodetic Survey (NGS) of the U.S. Department of Commerce • Pipeline Open Data Standard (PODS) • American Society of Mechanical Engineers (ASME)

Participating Organizations

• American Association of State Highway and Transportation Officials (AASHTO) • U.S. Department of Transportation (USDOT) Federal Highway Administration

(FHWA) • U.S. Army Corps of Engineers and U.S. Navy • U.S. NOAA National Geodetic Survey • Research - Virginia Tech, TTI • Pipeline Open Data Standard (PODS) • Canadian Standards Association (CSA) • Construction Industry • Design and SUE Consultants • Survey & Mapping Industries • GIS & CADD Industries • Utility Industry – Telecomm, Natural Gas, Power, PW

Standard Name

Utility “As-Built” Standard

“Standard for the Collection, Administration, and Exchange of Utility Installation Information”

Sub Tasks

• Collection-Gathering of all required information during installation

• Administration-Ability to meet all state statutes, regulations and harmonize with existing standards

• Exchange-Ensure that data meets all current digital interchange standards for current and potential future uses

Collection

• Trenchless Installations • Open Cut Installations • Surface Appurtenances • Overhead installations • Spatial Positioning and Metadata (NSRS) • Attributes (non-spatial metadata) • RFID (radio-frequency identification) • Remote Sensing Technologies and Data

Administration

• State Statutes • Existing Standards

– (ASCE 38, CSA S250, PODS, etc.) • Existing Regulations • Legal implications • Manuals of practice

Exchange

• Data Interchange Standards - OGC, VISTA, INSPIRE, IEC (IEEE of rest of world), ISO, ANSI

• Potential and Future Uses of the Data: Proactive and Real-Time Planning Asset Management Effective Damage Control Practices CAD/CADD, GIS, CIM, 3D Modeling, VDC Clash Detection, Sensitivity Modeling Machine Control

Schedule

The committee is established and approved by the ASCE Codes and Standards Committee. Inaugural meeting Savannah, GE May 3rd, 2013. Develop, review and finalize the standard for the first balloting by the end of 2016.

Putting ASCE 38 and CSA S250 (ASCE XX) Together: A Sample Spec for a Water Development Project

• Perform QLD mapping of all utilities within the footprint of the reservoir, treatment facility, and potential paths for the transmission and connection piping early in the planning stage of the project.

• Determine piping corridors that make sense given existing utility presence.

• At time of early design, further upgrade the reliability of utility information by attempting to gather QLB data on existing utility mains and commercial services within the selected corridors.

• Where necessary on critical existing utilities, upgrade at selected points to QLA.

• Use this mapping to either design around or determine relocation designs for existing utilities.

• Due to the critical nature of the raw water transmission pipe, document its location at Accuracy Level 1.

• Also at Level 1: – Document the location of

the connection mains – Document all relocated

utilities that are transmission facilities

– Document all Fiber Optic cables

• At Level 2 – Relocated distribution

piping and cables • At Level 3

– New and Relocated Commercial service lines

• At Level 4 – Relocated residential

service lines

Q & A