Anticipation in the retina and the primary visual cortex ...

Post on 20-Dec-2021

7 views 0 download

Transcript of Anticipation in the retina and the primary visual cortex ...

HAL Id: hal-02150600https://hal.inria.fr/hal-02150600

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Anticipation in the retina and the primary visualcortex : towards an integrated retino-cortical model for

motion processingBruno Cessac, Selma Souihel, Matteo Di Volo, Frédéric Chavane, Alain

Destexhe, Sandrine Chemla, Olivier Marre

To cite this version:Bruno Cessac, Selma Souihel, Matteo Di Volo, Frédéric Chavane, Alain Destexhe, et al.. Anticipationin the retina and the primary visual cortex : towards an integrated retino-cortical model for motionprocessing. Workshop on visuo motor integration, Jun 2019, Paris, France. �hal-02150600�

Anticipation in the retina and the primary visual cortex :towards an integrated retino-cortical model for motion

processing

Bruno Cessac, Selma Souihel Biovision

Anticipation in the retina and the primary visual cortex :towards an integrated retino-cortical model for motion

processing

Bruno Cessac, Selma Souihel Biovision

Anticipation in the retina and the primary visual cortex :towards an integrated retino-cortical model for motion

processing

Bruno Cessac, Selma Souihel

In collaboration with :

Frédéric ChavaneSandrine Chemla

Olivier MarreMatteo Di VoloAlain Destexhe

Biovision

4

The visual flow

Source : Wikipedia

5

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

6

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

7

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

8

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

Decoding spike trains

9

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

Decoding spike trains

Encoding motion

10

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

Decoding spike trains

« Analogic computing »Low energy consumpution

Dedicated circuitsSmall number of neurons

Specialized synapses

Encoding motion

11

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

12

The visual flow

Source : Wikipedia

Source : Ryskampet al. 2014

Upcoming light

Too slow !

13

Visual Anticipation

Source : Benvenutti et al. 2015

14

Visual Anticipation

Source : Benvenutti et al. 2015

Anticipation is carried out by the primary visual cortex (V1) through an activation wave

15

Visual Anticipation

Source :Berry et al.1999

Anticipation also takes place in the retina

16

Visual Anticipation

What are the respective :

➢Mechanisms underlying retinal and corticalanticipation?

➢Role of each part ?

TrajectoryTrajectory

17

Visual Anticipation

18

Visual Anticipation

No thalamus ...

19

Visual Anticipation

Which animal ?No thalamus ...

20

Visual Anticipation

No thalamus ... Which animal ?

21

Visual Anticipation

No thalamus ... Which animal ?

22

Visual Anticipation

No thalamus ... Which animal ?

23

Visual Anticipation

No thalamus ... Which animal ?

24

Visual Anticipation

No thalamus ... Which animal ?

25

Visual Anticipation

Developping a retino-cortical model of anticipation soas to

understand / propose

possible mechanisms for anticipation in the retina and in the cortex.

26

Anticipation in the retina

27

The Hubel-Wiesel view of vision

Ganglion cells

Nobel prize 1981

Ganglion cells response is the convolution of the stimulus with a spatio-temporalreceptive field followed by a non linearity

Ganglion cells are independent encoders

28

The Hubel-Wiesel view of vision

Source : Berry et al. 1999

Ganglion cells

Nobel prize 1981

29

Building a 2D retina model for motionanticipation

Gain control (Chen et al. 2013)

30

Building a 2D retina model for motionanticipation

31

Building a 2D retina model for motionanticipation

Gain control (Chen et al. 2013)

32

Building a 2D retina model for motionanticipation

Gain control (Chen et al. 2013)

33

1D results : smooth motion anticipationwith gain control

Bipolar layer Ganglionlayer

34

1D results : smooth motion anticipationwith gain control

Anticipation variability with stimulusparameters

35

Building a 2D retina model for motionanticipation

Ganglion cells are independent encoders

36

Building a 2D retina model for motionanticipation

Ganglion cells are not independent encoders

Gap junctions connectivity

37

Building a 2D retina model for motionanticipation

Gap junctions connectivity

38

Building a 2D retina model for motionanticipation

Gap junctions connectivity

39

Building a 2D retina model for motionanticipation

Gap junctions connectivity

40

Building a 2D retina model for motionanticipation

Diffusive wave of activity ahead of the motion

Gap junctions connectivity

41

1D results : smooth motion anticipationwith gap junctions

6

42

1D results : smooth motion anticipationwith gap junctions

Anticipation variability with stimulusparameters

43

Building a 2D retina model for motionanticipation

44

Building a 2D retina model for motionanticipation

Ganglion cells are not independent encoders

Amacrine cells connectivity

45

Amacrine cells connectivity

● A class of RGCs are selective to differential motion

Building a 2D retina model for motionanticipation

46

Amacrine cells connectivity

● The circuitry involves amacrine cells connectivity upstream of ganglion cells

Building a 2D retina model for motionanticipation

● A class of RGCs are selective to differential motion

47

Connectivity pathways

Amacrine cells connectivity

48

Connectivity pathways

Amacrine cells connectivity

49

Connectivity pathways

Amacrine cells connectivity

Anti diffusive wave of activityahead of the bar

50

1D results : smooth motion anticipationwith amacrine connectivity

Bipolar layer Ganglion layer

51

1D results : smooth motion anticipationwith amacrine connectivity

Anticipation variability with stimulusparameters

52

Comparing the performance of the three layers

53

Suggesting new experiments : 2D results

1) Angular anticipation

Stimulus

t = 0 ms 100 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms

Bipolar linearresponse

Bipolar gainresponse

Ganglion linearresponse

Ganglion gainresponse

A)

B) C)

54

Suggesting new experiments : 2D results

1) Angular anticipation

55

Anticipation in V1

56

Anticipation in V1

57

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

58

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

59

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

Affords a retino thalamic input

60

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

61

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

62

A mean field model to reproduce VSDIrecordings Zerlaut et al 2016

Chemla et al 2018

Response of the cortical model to a LNretina drive

Response of the cortical model to a retinadrive with gain control

Anticipation in the cortex : VSDI dataanalysis (Data courtesy of F.

Chavane et S. Chemla)

Comparing simulation results to VSDIrecordings

Cortex experimentalrecordings

Simulation resultsResponse to an LNmodel of the retina

Simulation resultsResponse to a gaincontrol model of theretina

Conclusions

● We developped a 2D retina with three ganglion cell layers,implementing gain control and connectivity.

● We use the output of our model as an input to a mean field model ofV1, and were able to reproduce anticipation as observed in VSDI

Conclusions

● How to improve object identification ● 1) exploring the model's parameters and

● 2) using connectivity ?

● Is our model able to anticipate more complex trajectories, withaccelerations for instance ?

● How to calibrate connectivity using biology ?

● How does anticipation affect higher order correlations ?

● Would it be possible to design psycho-physical tests clearly showingthe role of the retina in visual anticipation ?

Thank you for your attention !