AME$60634$$ Int.$HeatTrans.$ Fins: Overviewsst/teaching/AME60634/lectures/AME60634_F13... ·...

Post on 31-Jan-2021

3 views 0 download

Transcript of AME$60634$$ Int.$HeatTrans.$ Fins: Overviewsst/teaching/AME60634/lectures/AME60634_F13... ·...

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    1    

    Fins: Overview •  Fins

    –  extended surfaces that enhance fluid heat transfer to/from a surface in large part by increasing the effective surface area of the body

    –  combine conduction through the fin and convection to/from the fin

    •  the conduction is assumed to be one-dimensional

    •  Applications –  fins are often used to enhance convection when h is

    small (a gas as the working fluid) –  fins can also be used to increase the surface area

    for radiation –  radiators (cars), heat sinks (PCs), heat exchangers

    (power plants), nature (stegosaurus)

    Straight fins of (a) uniform and (b) non-uniform cross sections; (c) annular fin, and (d) pin fin of non-uniform cross section.

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    2    

    Fins: The Fin Equation •  Solutions

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    3    

    x2 d2ydx2

    + x dydx+ m2x2 −ν 2( ) y = 0

    Bessel Equations

    with solution x2 d2ydx2

    + x dydx+ m2x2 −ν 2( ) y = 0

    Form of Bessel equation of order ν

    Jν = Bessel function of first kind of order ν Yν = Bessel function of second kind of order ν

    x2 d2ydx2

    + x dydx− m2x2 −ν 2( ) y = 0 with solution y x( ) =C1Iν mx( )+C2Kν mx( )

    Form of modified Bessel equation of order ν

    Iν = modified Bessel function of first kind of order ν Kν = modified Bessel function of second kind of order ν

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    4    

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    5    

    ddx

    Wν mx( )!" #$=mWν−1 mx( )−

    νxWν mx( ) W = J,Y, I

    −mWν−1 mx( )−νxWν mx( ) W = K

    &

    '((

    )((

    Bessel Functions – Recurrence Relations

    OR

    ddx

    Wν mx( )!" #$=−mWν+1 mx( )+

    νxWν mx( ) W = J,Y,K

    mWν+1 mx( )+νxWν mx( ) W = I

    &

    '((

    )((

    AND

    ddx

    xνWν mx( )!" #$=mxνWν−1 mx( ) W = J,Y, I−mxνWν−1 mx( ) W = K

    &

    '(

    )(

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    6    

    Fins: Fin Performance Parameters •  Fin Efficiency

    –  the ratio of actual amount of heat removed by a fin to the ideal amount of heat removed if the fin was an isothermal body at the base temperature

    •  that is, the ratio the actual heat transfer from the fin to ideal heat transfer from the fin if the fin had no conduction resistance

    •  Fin Effectiveness –  ratio of the fin heat transfer rate to the heat transfer rate that would exist

    without the fin

    •  Fin Resistance

    –  defined using the temperature difference between the base and fluid as the driving potential

    η f ≡qfqf ,max

    =qf

    hAfθb

    ε f ≡qfqf ,max

    =qf

    hAc,bθb=Rt,bRt, f

    Rt, f ≡θbqf

    =1

    hAfη f

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    7    

    Fins: Efficiency

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    8    

    Fins: Efficiency

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    9    

    Fins: Arrays •  Arrays

    –  total surface area

    –  total heat rate

    –  overall surface efficiency

    –  overall surface resistance

    At = NAf + Ab

    qt = Nη f hAfθb + hAbθb =ηohAtθb =θbRt,o

    Rt,o =θbqt

    =1

    hAtηo

    N ≡ number of finsAb ≡ exposed base surface (prime surface)

    ηo =1−NAfAt

    1−η f( )

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    10    

    Fins: Thermal Circuit •  Equivalent Thermal Circuit

    •  Effect of Surface Contact Resistance

    Rt,o =1

    hAtηo(c )

    ηo(c ) =1−NAfAt

    1−η fC1

    $

    % &

    '

    ( )

    C1 =1−η f hAf$ $ R t,c

    Ac,b

    %

    & '

    (

    ) *

    qt =ηo(c )hAfθb =θbRt,o(c )

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    11    

    sinh Function

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    12    

    Fourier Series Consider a set of eigenfunctions ϕn that are orthogonal, where orthogonality is defined as

    φm x( )φn x( )dx = 0a

    b

    ∫ for m ≠ n

    An arbitrary function f(x) can be expanded as series of these orthogonal eigenfunctions

    f x( ) = A0φ0 x( )+ A1φ1 x( )+ A2φ2 x( )+... or f x( ) = Anφn x( )n=0

    ∑Due to orthogonality, we thus know

    φn x( ) f x( )dxa

    b

    ∫ = φn x( ) Anφn x( )n=0

    ∑ dxa

    b

    ∫ = φn x( )Anφn x( )dxa

    b

    ∫all other ϕnAmϕm integrate to zero because m ≠ n

    Thus, the constants in the Fourier series are

    φn x( ) f x( )dxa

    b

    ∫ = An φn2 x( )a

    b

    ∫ An =φn x( ) f x( )dx

    a

    b

    φn2 x( )

    a

    b