AEEM-7028 lecture, Part 3 Reflection and Transmissionpnagy/ClassNotes/AEEM7028 Ultrasonic NDE... ·...

Post on 31-Jul-2020

8 views 0 download

Transcript of AEEM-7028 lecture, Part 3 Reflection and Transmissionpnagy/ClassNotes/AEEM7028 Ultrasonic NDE... ·...

Part 3

REFLECTION AND TRANSMISSION

Normal Incidence

ρ , c1 1

ρ , c2 2

Incident Wave Reflection

Transmission

1( )ei x tki iu A − ω= 1( )1 1ei x tki i iu Z i A Z −ωτ = − = ω

1( )ei k x tr ru A − − ω= − 1( )

1 1ei k x tr r ru Z i A Z − − ωτ = = ω

2( )ei x tkt tu A − ω= 2( )2 2 ei x tkt t tu Z i A Z −ωτ = − = ω

(“physical” sign convention)

Boundary Conditions:

for any value of t at x = 0

i r tu u u+ =

i r tτ + τ = τ

i r tA A A− =

1 1 2i r tA Z A Z A Z+ =

Reflection/Transmission Coefficients

rd

i

ARA

= td

i

ATA

=

21

1 d dZR TZ

+ = 1 d dR T− =

displacement:

2 12 1

rd

i

Z ZARZ ZA

−= =

+

11 2

2td

i

ZATZ ZA

= =+

stress:

2 12 1

rs

i

Z ZRZ Z

−τ= =+τ

21 2

2ts

i

ZTZ Z

τ= =+τ

steel-water interface

( 6 246.5 10 kg/m ss scρ = × , 6 21.5 10 kg/m sw wcρ = × )

pi

pr

pt

pt

pr

pi

a)

b)

steel water

water steel

Power Coefficients: r t iP P P+ = (Instantaneous) Intensity:

r t iI I I+ =

Zτ = − v

2 2 2I Z v Z u= −τ = ωv =

2 22 1 1

1 2 12 1 1 2

2Z Z ZZ Z ZZ Z Z Z

⎛ ⎞ ⎛ ⎞−+ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Special cases: solid/vacuum ( 2 0Z = )

1d sR R= = − , 2dT = , 1sR = − , 0sT =

solid/rigid ( 2Z → ∞ )

1d sR R= = , 0dT = , 2sT =

Shear wave at normal incidence: displacement:

2 12 1

r s sd

i s s

Z ZARZ ZA

−= =

+ 1

1 2

2t sd

i s s

ZATZ ZA

= =+

stress:

2 12 1

s srs

i s s

Z ZRZ Z

−τ= =+τ

21 2

2t ss

i s s

ZTZ Z

τ= =+τ

Impedance-Translation Theorem

d

incident wave

reflected wave

transmitted wave

Z1

Z2

Zo ,ko

Zload

Zinput

A+

A_ x

( ) exp( ) exp( )o ox A i k x A i k x+ −τ = + −

1( ) [ exp( ) exp( )]o oo o

xx A i k x A i k xi Z + −

∂ τ ∂= − = − − −

ωρ/

v

The input impedance of the layer:

input(0)(0) o

A AZ ZA A

+ −

+ −

τ += − =

−v

load( )( )

o o

o o

i k d i k do i k d i k d

d A e A eZ Zd A e A e

−+ −

−+ −

τ += − =

−v

load

load

o o

o o

i k d i k do

i k d i k do

Z e Z eAA Z e Z e

− −+

+=

Translation Formula:

loadinput

load

cos( ) sin( )cos( ) sin( )

o o oo

o o o

Z k d i Z k dZ ZZ k d i Z k d

−=

Reflection Coefficient:

input 1

input 1

Z ZR

Z Z−

=+

load 2Z Z=

Immersed/Embedded Layer:

2 1Z Z=

2 21

2 211

tan( )( )tan( )( ) 2

o o

o o o

i k d Z ZR

i k d Z Z Z Z−

=+ −

2(1 )T R= −

2 2

sin( )

sin ( ) 1o

o

k dR

k d

ξ=

ξ +

2 21

sin ( ) 1oT

k d=

ξ +

impedance contrast:

1 1½ o oZ Z Z Zξ = −/ /

Reflection/Transmission at a Layered Interface

ρ , c1 1

Incident Wave Reflection

ρ , c1 1

Transmission

ρ , co o

2 21

sin ( ) 1oT

k d=

ξ +

Thickness / Wavelength

Tran

smis

sion

Coe

ffic

ient

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25

Plexiglas

Steel

in water

Reflectivity of Thin Cracks in Solids

2 2

sin( )

sin ( ) 1o

o

k dR

k d

ξ=

ξ +

0lim o

dR k d

→= ξ

log {Frequency x Thickness [MHz mm]}

Ref

lect

ion

Coe

ffic

ient

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0

air gap in steelwater-filled crack

in steel

Impedance Matching

loadinput

load

cos( ) sin( )cos( ) sin( )

o o oo

o o o

Z k d i Z k dZ ZZ k d i Z k d

−=

(2 1) 4od n= + λ /

(2 1)2ok d n π

= +

2

inputload

oZZZ

=

Perfect matching by quarter-wavelength layer:

1 2oZ Z Z= center frequency fo

4 4o o

o

cdf

λ= =

Bandwidth:

input 1

input 1

( )( )

( )Z f Z

R fZ f Z

−=

+

loadinput

load

2 2cos( ) sin( )( ) 2 2cos( ) sin( )

oo o

oo

o o

f fZ d i Z dc cZ f Z f fZ d i Z d

c c

π π−=

π π−

1 2oZ Z Z= and load 2Z Z=

2 1 2input 1 2

1 2 2

2 2cos( ) sin( )( ) 2 2cos( ) sin( )

o o

o o

f fZ d i Z Z dc cZ f Z Z f fZ Z d i Z d

c c

π π−=

π π−

( ) ( )o

o of f

RR R f f ff =

∂≈ + −

input 1( )oZ f Z=

( ) 0oR f =

2 1r Z Z= /

input 1

2 2cos( ) sin( )( ) 2 2cos( ) sin( )

o o

o o

f fr d i r dc cZ f Z f fd i r d

c c

π π−=

π π−

sin( ) 1, and cos( )2

oo o

o

f fk d k df−π

≈ ≈ Δ =

input 1( ) r i rZ f Zi r

Δ −≈

Δ −

1 1

1 1

( 1)( )( 1) 2

r i rZ Zri rR f

r i r r i rZ Zi r

Δ −−

Δ −Δ −≈ ≈Δ − Δ + −

+Δ −

1 1( )

421

o

o

f fr rR f ifr rr i

−− − π≈ ≈

+ −Δ

22 2

2energy

( 1) ( 1)1 14 4 2

oo

f fr rTr r f

⎛ ⎞−− − π≈ − Δ = − ⎜ ⎟

⎝ ⎠

2 1r

4 21 1.8( 1) 1o

rf f rBQ f r r

−= = ≈ ≈

π − −

f1 and f2 are the half-power (-3 dB) points

Quarter-Wavelength Matching Layer

quarter-wavelength matching layer between quartz and water

Thickness / Wavelength

Ene

rgy

Tran

smis

sion

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5

exact

approximate

unmatched

quarter-wavelength matching layer between steel and water

Thickness / Wavelength

Ener

gy T

rans

mis

sion

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5

exact

approximate

unmatched

Continuous Transition

solid rock

mud

ultrasonic transducer

incident wave

echo from the bottomclear water

ρ , c1 1

ρ , coj oj

j = 1

j = N

ρ , c2 2 For the jth layer:

oj oj ojZ c= ρ , 2oj

oj

fkcπ

= , (j = 1, 2, ... N)

dN

=

Recursive relationship:

load1 2 2 2Z Z c= = ρ

loadinp

load

cos( ) sin( )cos( ) sin( )

j oj oj ojj oj

oj oj j oj

Z k d i Z k dZ Z

Z k d i Z k d−

=−

load 1 inp j jZ Z+ =

Reflection coefficient:

inp 1

inp 1

N

N

Z ZR

Z Z−

=+

, where 1 1 1Z c= ρ

Imperfect Interface, Finite Interfacial Stiffness

1( )ei x tki iu A − ω= 1( )1 1ei x tki i iu Z i A Z −ωτ = − = ω

1( )ei k x tr ru A − − ω= − 1( )

1 1ei k x tr r ru Z i A Z − − ωτ = = ω

2( )ei x tkt tu A − ω= 2( )2 2 ei x tkt t tu Z i A Z −ωτ = − = ω

ρ , c2 2

ρ , c1 1

Incident Wave Reflection

Transmission

K

x

Boundary Conditions:

i r tu u u u+ + Δ =

i r tτ + τ = τ

i r tuK K

τ + τ τΔ = =

K denotes the normal Kn or transverse Kt interfacial stiffness

Slip boundary conditions: n tK K → ∞/

Low-density interphase layer: 3 6n tK K ≈ −/

Kissing bond: 2 3n tK K ≈ −/

Partial bond: 0.5 1n tK K ≈ −/

Reflection and Transmission Coefficients

Continuity of displacement:

ti r tA A A

− = −

21i r ti ZA A A

Kω⎛ ⎞− = −⎜ ⎟

⎝ ⎠

Continuity of stress:

1 1 2i r tA Z A Z A Z+ =

Stress reflection and transmission coefficients:

Imperfect interface:

2 1 1 22 1 1 2

//

tri i

A Z Z i Z Z KRA Z Z i Z Z K

− + ωτ= = =+ − ωτ

2 21 1 2 1 2

2/

t ti i

A Z ZTA Z Z Z i Z Z K

τ= = =+ − ωτ

Ideal interface (K→∞):

2 10

2 1ri

Z ZRZ Z

−τ= =+τ

20

1 2

2ti

ZTZ Z

τ= =+τ

00

lim R Rω→

= and 00

lim T Tω→

=

lim 1Rω→∞

= − and lim 0Tω→∞

=

Frequency Dependence

Moduli of the reflection and transmission coefficients of an imperfect steel-aluminum bond of 14 310 N mK = / for longitudinal wave at normal incidence

Frequency [MHz]

Ref

lect

ion

and

Tran

smis

sion

Coe

ffic

ient

s

00.10.20.30.40.50.60.70.80.9

1

0 2 4 6 8 10

Reflection

Transmission

For similar materials ( 1 2Z Z Z= = ):

21 2 1

i Z K iRi Z K iω ω Ω

= =− ω − ω Ω

/ // /

1 11 2 1

Ti Z K i

= =− ω − ω Ω/ /

2K ZΩ = / is the characteristic transition frequency

Oblique Incidence, Snell’s Law

c2θ2

c1 θ1

λ1

λ2Λ

c2θ2

c1 θ1

λ1

λ2Λ

1 21 2sin sin

λ λΛ = =

θ θ

1 2

1 2sin sinc c

f f=

θ θ

1 2

1 2sin sinc c

=θ θ

Reflection and Transmission

θdi

solid 1

Rd

Rs

Id

Td

solid 2

Ts

z

yθs1

θd1

θs2

θd2

solid 1

Rd

Rs

solid 2

TdTs

θsi

z

yIs θs1

θd1

θs2

θd2

Snell's Law:

1 1 2 2

1 1 1 1 2 2

sin sin sin sin sin sindi si d s d s

d s d s d sc c c c c cθ θ θ θ θ θ

= = = = =

Constitutive relationships:

( 2 ) yzyy

uuz y

∂∂τ = λ + λ + μ

∂ ∂

( )y zzy

u uz y

∂ ∂τ = μ +

∂ ∂

2 2

1 1 1 1 11 1, 2 ,s dc cμ = ρ λ + μ = ρ 2 22 2 2 2 22 2, and 2s dc cμ = ρ λ + μ = ρ

Boundary Conditions

both normal and transverse velocity and stress components must be continuous at the interface

(2) (1)

(2) (1)

(2) (1)

(2) (1)

0000

y y

z z

yy yy

zy zy

u u

u u

⎡ ⎤−⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥τ − τ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥τ − τ⎢ ⎥⎣ ⎦

( 1) ( 2) ( 1) ( 2) ( )

( 1) ( 2) ( 1) ( 2) ( )

( 1) ( 2) ( 1) ( 2) ( )

( 1) ( 2) ( 1) ( 2) ( )

d d s s iy y y y yd d s s i

z z z z zd d s s i

yy yy yy yy yyd d s s i

zy zy zy zy zy

u u u u u

u u u u u

⎡ ⎤ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− + − +⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−τ + τ −τ + τ τ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−τ + τ −τ + τ τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

longitudinal incidence:

Id = 1, Is = 0 shear incidence

Is = 1, Id = 0

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

or

d

d

s

s

a a a a R b ca a a a T b ca a a a R b ca a a a T b c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

longitudinal [b] or shear wave incidence [c]

The matrix elements aij, bi, and ci can be easily calculated from simple geometrical considerations:

1 2 1 2

1 2 1 2

1 1 2 2 1 1 2 2

1 21 1 2 2 1 1 2 2

1 2

cos cos sin sinsin sin cos cos

cos2 cos2 sin 2 sin 2

sin 2 sin 2 cos2 cos2

d d s s

d d s s

d s d s s s s s

s ss d s d s s s s

d d

Z Z Z Zc cZ Z Z Zc c

− θ − θ − θ θ⎡ ⎤⎢ ⎥− θ θ θ θ⎢ ⎥

= ⎢ ⎥− θ θ − θ − θ⎢ ⎥⎢ ⎥− θ − θ θ − θ⎢ ⎥⎣ ⎦

a

(the common - iω factor was omitted in the last two rows)

11

11 1

1

cossin

sincos

andcos2sin 2

sin 2 cos2

disi

disi

d sis si

ss di s si

d

ZZ

cZ Zc

− θ⎡ ⎤θ⎡ ⎤⎢ ⎥θ ⎢ ⎥⎢ ⎥ θ⎢ ⎥= =⎢ ⎥θ

⎢ ⎥− θ⎢ ⎥⎢ ⎥⎢ ⎥− θ − θ⎣ ⎦⎢ ⎥⎣ ⎦

b c

Cramer's rule:

(1) (2) (3) (4)det[ ] det[ ] det[ ] det[ ], , ,det[ ] det[ ] det[ ] det[ ]d d s sR T R T= = = =

a a a aa a a a

Special Cases

a) fluid-vacuum b) fluid-fluid (cd2 > cd1)

fluid

vacuum

θi θr

Id Rdd

fluid 1

θi θr

Id

Tdd

Rdd

fluid 2

θd2

c) solid-vacuum d) solid-vacuum (longitudinal incidence) (shear incidence)

solid

vacuum

θi θr

θs

Rdd

Rds

Idsolid

vacuum

θi θr

θd

Is

Rsd

Rss

e) fluid-solid

fluid

solid

θi θr

θs

θd

Id

Tdd

Rdd

Tds

f) solid-fluid g) solid-fluid (longitudinal incidence) (shear incidence)

solid

fluid

θi

Id

Tdd

Rdd

Rdsθs1

θd2

θd1θ =r

solid

fluid

θi

Tsd

Rsd

RssIs

θd1

θd2

θs1θ =r

h) solid-solid i) solid-solid (longitudinal incidence) (shear incidence)

θi

solid 1

Id Rdd

Rds

Tdd

solid 2

Tds

θs1

θs2

θd2

θd1θ =r

solid 1

θiIs

Rsd

Rss

solid 2

TsdTss

θs2

θd2

θd1

θs1θ =r

Fluid-vacuum: 1 ,dd r iR ≡ =θ θ Fluid-fluid:

22 1

sin sin, d ir i

d dc cθ θ= =θ θ

22

1sin sind

d id

cc

=θ θ

2 1 2thend d d ic c< <θ θ

2 1 2thend d d ic c> >θ θ There exists one critical angle ( 2 2sin 1, 90d d→ → °θ θ )

11

2sin d

crd

cc

Solid-Vacuum Interface, Mode Conversion P-wave incident (no critical angle):

sinsin( ) , s ir d i

s dc cθθ= = =θ θ θ

S-wave incident:

sin sin( ) , d ir s i

d sc cθ θ

= = =θ θ θ

There exists one critical angle (sin 1dθ → or 90dθ → ° )

1sin scr

d

cc

The boundary conditions require that both normal

and transverse stress disappear at the surface.

cos2 sin 2 cos2

sin 2 cos2 sin 2

d s s s d sdd

s ss d s s s dds

d d

Z Z ZR

c cZ Z ZRc c

− θ − θ θ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥− θ θ − θ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

22

2

22

2

cos 2 sin 2 sin 2

cos 2 sin 2 sin 2

ss s d

ddd

ss s d

d

cc

Rcc

θ − θ θ

= −θ + θ θ

depends on the Poisson ratio of the solid

(0 ) (90 ) 1dd ddR R° = ° = −

Longitudinal and Shear Wave Reflection Coefficients

ν = 0.3 (solid) and ν = 0.35 (dashed)

Angle of Incidence [deg]

Ref

lect

ion

Coe

ffic

ient

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

longitudinal-to-longitudinal

longitudinal-to-shear

Angle of Incidence [deg]

Ref

lect

ion

Coe

ffic

ient

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

shear-to-longitudinal

shear-to-shear

Polar diagrams

longitudinal incidence

0o15o

45o30o

60o

90o

75o

90o

75o

60o

45o

30o15o longitudinal

shear

shear incidence

0o15o

45o30o

60o

90o

75o

90o

75o

60o

45o

30o15o longitudinal

shear

Fluid-Solid Interface

( 1) ( 2) ( 2) ( )

( 1) ( 2) ( 2) ( )

( 2) ( 2) 00

d d s iy y y yd d s i

yy yy yy yyd s

zy zy

u u u u⎡ ⎤ ⎡ ⎤− + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−τ + τ + τ = τ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+τ +τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

11 12 14 1

31 32 34 3

42 440 0

dd

dd

ds

a a a R ba a a T b

a a T

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

2 2

1 2 2 2 2 1

22 2 2 2

2

cos cos sin coscos2 sin 2

00 sin 2 cos2

i d s dd i

d d s s s dd d

s dss d s s

d

RZ Z Z T Z

c TZ Zc

⎡ ⎤⎢ ⎥− θ − θ θ − θ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− θ − θ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥− θ − θ⎢ ⎥⎣ ⎦

2 2

1 2 2 2 2

22 2 2 2(1) 2

2 2

1 2 2 2 2

22 2 2 2

2

cos cos sincos2 sin 2

0 sin 2 cos2det[ ]

det[ ]cos cos sin

cos2 sin 2

0 sin 2 cos2

i d s

d d s s s

ss d s s

ddd

i d s

d d s s s

ss d s s

d

Z Z ZcZ Zc

R

Z Z ZcZ Zc

− θ − θ θθ − θ

− θ − θ= =

− θ − θ θ− θ − θ

− θ − θ

aa

cos cos sin

cos2 sin 2

0 sin 2 cos2cos cos sin

cos2 sin 2

0 sin 2 cos2

i d s

f d s s s

s d d sdd

i d s

f d s s s

s d d s

c c c

c cR

c c c

c c

θ θ − θρ θ − θ

θ θ=

θ θ − θ−ρ θ − θ

θ θ

1 2ρ = ρ ρ/

1 2,f d d dc c c c= = , 2s sc c= , 1i di dθ = θ = θ , 2d dθ = θ , and 2s sθ = θ

2 2 2

2 2 2cos ( cos 2 sin 2 sin 2 ) ( cos2 cos sin 2 sin )

cos ( cos 2 sin 2 sin 2 ) ( cos2 cos sin 2 sin )i s s d s f d s d s d sd

ddi s s d s f d s d s d sd

c c c c cR

c c c c c

θ θ + θ θ − ρ θ θ + θ θ=

θ θ + θ θ + ρ θ θ + θ θ

Displacement, Stress, Intensity, and Power Coefficients

( ) ( )

1

jstress displacement ZZ

βαβ αβ

αΓ = Γ

( )

1

jstress ZZ

βαβαβ

αΓ = Γ

Γ stands for either R (j = 1) or T (j = 2)

α and β are either d or s

( ) ( ) ( ) 21

jintensity displacement stress ZZ

βαβ αβ αβ αβ

αΓ = Γ Γ = Γ

( ) ( ) 21 1 1

j j jpower intensity cos Z coscos Z cos

β β βαβ αβ αβ

α α α

θ θΓ = Γ = Γ

θ θ

( ) ( ) ( ) ( ) 1power power power powers sd dR R T Tα αα α+ + + ≡

Law of reciprocity:

( ) ( )power powerαβ βαΓ ≡ Γ

Energy Reflection and Transmission Coefficients

aluminum in water

Angle of Incidence [deg]

Ener

gy R

efle

ctio

n an

d Tr

ansm

issi

onC

oeff

icie

nts

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

reflection

longitudinaltransmission shear

transmission

steel in water

Angle of Incidence [deg]

Ener

gy R

efle

ctio

n an

d Tr

ansm

issi

onC

oeff

icie

nts

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

reflection

longitudinaltransmission

sheartransmission

Energy Reflection and Transmission Coefficients

Plexiglas/aluminum interface

Angle of Incidence [deg]

Ener

gy R

efle

ctio

n C

oeff

icie

nts

00.10.20.30.40.50.60.70.80.9

1

0 10 20 30 40 50 60 70 80 90

longitudinalreflection

shear reflection

Angle of Incidence [deg]

Ener

gy T

rans

mis

sion

Coe

ffic

ient

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

longitudinalshear

transmissiontransmission

Slip Boundary Conditions

( 1) ( 2) ( 1) ( 2)

( 1) ( 2) ( 1) ( 2)

( 1) ( 2) ( 1) ( 2)

( 1) ( 2) ( 1)

normal displacementtangential displacement

normal tractiontangential traction

d d s sy y y yd d s s

z z z zd d s s

yy yy yy yyd d s

zy zy zy

u u u u

u u u u

− + − +⎧ ⎫⎪ ⎪ − + − +⎪ ⎪⎨ ⎬

−τ + τ −τ +τ⎪ ⎪⎪ ⎪⎩ ⎭ −τ + τ −τ +τ

( )

( )

( )

( 2) ( )

iyi

ziyy

s izy zy

u

u

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥τ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

or

d

d

s

s

a a a a R b ca a a a T b ca a a a R b ca a a a T b c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Slip boundary conditions:

continuity of the normal displacement and traction

vanishing tangential traction on both sides

11 12 13 14 1 1

31 32 33 34 2 2

41 43 4 4

42 44

or0 0

0 0 0 0

d

d

s

s

Ra a a a b cTa a a a b cRa a b cTa a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Angle-Beam Transducers

transducer

specimen

couplant

θs

θiwedge

sinsin

s s

i i

cc

θ=

θ

Plexiglas/Aluminum, longitudinal-to-shear transmission

Angle of Refraction [deg]

Ener

gy T

rans

mis

sion

00.10.20.30.40.50.60.7

30 40 50 60 70 80 90

"slip" boundary

"rigid" boundary

SH Wave Reflection and Transmission at a Solid-Solid Interface

solid 1

R

solid 2

T

θiI

z

yθi=θs1

θs2

( ) ( ) ( )i r tx x xu u u+ = and ( ) ( ) ( )i r t

xy xy xyτ + τ = τ

( ) ( ) ( )

( ) ( ) ( )

r t ix x xr t i

xy xy xy

u u u⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−τ + τ τ⎣ ⎦ ⎣ ⎦

or 11 12 1

13 14 2

a a cRa a cT

⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

All displacements are in the x direction only (without the common i te− ω term):

1 1( ) ( cos sin )i s i si i k y k zxu e − θ + θ=

1 1( ) ( cos sin )i s i si i k y k zxu e − θ + θ=

2 2( ) ( cos sin )t s t st i k y k zxu T e − θ + θ=

2t sθ = θ , 2 1sin sint s s ic cθ = θ/

Stress components:

22xy xy s xc u yτ = με = ρ ∂ ∂/

1 1( ) ( cos sin )1cos i s i si i k y k z

xy s ii Z e − θ + θτ = − ω θ

1 1( ) (cos sin )1cos i s i sr i k y k z

xy s ii Z Re θ + θτ = ω θ

2 2( ) ( cos sin )2 cos t s t st i k y k z

xy s ti Z T e − θ + θτ = − ω θ

s sZ c= ρ is the specific acoustic impedance of the medium

1 2 1

1 1 1cos cos coss i s t s i

RZ Z ZT

−⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥θ θ θ⎣ ⎦⎣ ⎦ ⎣ ⎦

(the second row was divided by - iω )

(Displacement) reflection and transmission coefficients:

1 2 1 2

1 2

1 2

1 1cos cos cos cos1 1 cos cos

cos cos

s i s t s i s t

s i s t

s i s t

Z Z Z ZRZ Z

Z Z

θ θ θ − θ= =

− θ + θθ θ

1 1 1

1 2

1 2

1 1cos cos 2 cos1 1 cos cos

cos cos

s i s i s i

s i s t

s i s t

Z Z ZTZ Z

Z Z

−θ θ θ

= =− θ + θ

θ θ

“Normal component” of the acoustic impedance ' coss sZ Z= θ

' '1 2

' '1 2

s s

s s

Z ZRZ Z

−=

+ and

'1

' '1 2

2 s

s s

ZTZ Z

=+

Rayleigh Wave Solid-vacuum interface (free surface):

cos2 sin 20

sin 2 cos2 0

d s s sd

ss d s s s

d

Z ZR

cZ Z Rc

− θ − θ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥− θ θ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

Nontrivial solution exists if:

22

2cos 2 sin 2 sin 2 0ss s d

d

cc

θ + θ θ =

sin sin 1s d

s d Rc c cθ θ

= =

Relative velocities:

1 2( )2(1 )

s

d

cc

− νξ = =

−ν

Rs

cc

η =

Exact Rayleigh equation:

6 4 2 2 28 8(3 2 ) 16(1 ) 0η − η + − ξ η − − ξ = Approximate expression:

0.87 1.121+ ν

η ≈+ν