AE 2403 VIBRATIONS AND ELEMENTS OF AEROELASTICITY

Post on 04-Jan-2016

77 views 5 download

description

AE 2403 VIBRATIONS AND ELEMENTS OF AEROELASTICITY. BY Mr. G.BALAJI DEPARTMENT OF AERONAUTICAL ENGINEERING REC,CHENNAI. Fundamentals of Linear Vibrations. Single Degree-of-Freedom Systems Two Degree-of-Freedom Systems Multi-DOF Systems Continuous Systems. - PowerPoint PPT Presentation

Transcript of AE 2403 VIBRATIONS AND ELEMENTS OF AEROELASTICITY

AE 2403 VIBRATIONS AND ELEMENTS OF AEROELASTICITY

BYMr. G.BALAJIDEPARTMENT OF AERONAUTICAL ENGINEERINGREC,CHENNAI

Fundamentals of Linear Vibrations

1. Single Degree-of-Freedom Systems

2. Two Degree-of-Freedom Systems3. Multi-DOF Systems4. Continuous Systems

Single Degree-of-Freedom Systems

1. A spring-mass systemGeneral solution for any simple oscillatorGeneral approachExamples

2. Equivalent springsSpring in series and in parallelExamples

3. Energy MethodsStrain energy & kinetic energy Work-energy statementConservation of energy and example

A spring-mass system

General solution for any simple oscillator:

Governing equation of motion: 0 kxxm

)sin()cos()( tv

txtx nn

ono

2

n

o2o

nn

n

ooo

ωv

xamplitudeC;2ω

T1

Hz)or c.(cycles/sefrequencyf

vibrationofperiodT;T2

)(rads/sec.frequencynaturalmk

ω

(sec.)timet;xvelocityinitialvnt;displacemeinitialx

π

π

where:

Any simple oscillator

General approach:

1. Select coordinate system2. Apply small displacement3. Draw FBD4. Apply Newton’s Laws:

)(

)(

Idt

dM

xmdt

dF

Simple oscillator – Example 1

22 mlmdI

inertiaofmomentmassI

cg

IK

IM

02 Kml 2ml

Kωn

+

Simple oscillator – Example 2

l

a

m

mlmdII

n

cg22

2)( mlaak

IM oo

022 kaml

+

(unstable)ω,l

aAs

m

kω,

l

aWhenits:limNote

n

n

00

1

Simple oscillator – Example 3

l

b

m

mlmm

ml

mdII

mllA

AdxxdmrI

n

cgo

cg

l

3

3212

1212

2

222

2

23

22 2/

0

3)(

2mlbbk

IM oo

03

22

kbml

+

Simple oscillator – Example 4

Lma

GJL

JGK:stiffnessEquivalent

TL

JG

JG

TL

maI:tableFrom

n 22

2

2

2

IT

IM z

02

2

L

GJma

+

Equivalent springs

Springs in series:same force - flexibilities add

Springs in parallel:same displacement - stiffnesses add

21 kkkeq

eqkkk

kkP

)( 21

21

PfPff

Pkk

eq

)(

11

21

2121

21 fffeq

Equivalent springs – Example 1

0 xKxm eq

0312

32

31

x

L

EI

L

EIxm

Equivalent springs – Example 2

)a(ml

Wlkaω

nn

n

2

22

2mllWa)ak(

IM oo

022 )Wlka(ml

+

Consider:

ka2 > Wl n2 is positive - vibration is stable

ka2 = Wl statics - stays in stable equilibrium

ka2 < Wl unstable - collapses

Equivalent springs – Example 3

02

2

sinmglml

mlsinWl

IM oo

0 sinl

gl

l

g

n

0

+We cannot define n

since we have sin term

If < < 1, sin :

Energy methods

Strain energy U:energy in spring = work done

Kinetic energy T:

Conservation of energy:work done = energy stored

PkU2

1

2

1 2

Tenergy kinetic ofincrement

done work ofIncrement

dT) rrm d(dt) r()r (m

rdF

21

rrmT

2

1

Work-Energy principles

Work done = Change in kinetic energy

Conservation of energy for conservative systems

E = total energy = T + U = constant

122

1

2

1

TTdT rdFT

T

r

r

Energy methods – Example

0

0

xxmxkx

)E(dt

d

0 kxxm 22

2

2

2

1

2

12

12

1

xmkxTUE

xmT

kxU

Same as vector mechanics

Work-energy principles have many

uses, but one of the most useful is

to derive the equations of motion.Conservation of energy: E = const.

Two Degree-of-Freedom Systems

1. Model problemMatrix form of governing equation Special case: Undamped free vibrationsExamples

2. Transformation of coordinates

Inertially & elastically coupled/uncoupledGeneral approach: Modal equationsExample

3. Response to harmonic forcesModel equationSpecial case: Undamped system

Two-DOF model problem

Matrix form of governing equation:

2

1

2

1

22

221

2

1

22

221

2

1

2

1 )()(

0

0

P

P

x

x

kk

kkk

x

x

cc

ccc

x

x

m

m

where:[M] = mass matrix; [C] = damping matrix;[K] = stiffness matrix; {P} = force vector

Note: Matrices have positive diagonals and are symmetric.

Undamped free vibrationsZero damping matrix [C] and force vector {P}

)cos(2

1

2

1

tA

A

x

xAssumed general solutions:

Characteristic polynomial (for det[ ]=0):

021

212

2

2

1

214

mm

kk

m

k

m

kk

21

21

21

2

2

2

1

21

2

2

1

212

21

21

4

2

1

mm

kk

m

k

m

kk

m

k

m

kk

Eigenvalues (characteristic values):

Characteristic equation:

0

0

)(

)(

2

1

2222

22

121

A

A

mkk

kmkk

Undamped free vibrationsSpecial case when k1=k2=k and m1=m2=m

Eigenvalues and frequencies:

period lfundamenta

frequency lfundamenta

ω

π T

m

k.ω

2

61801

m

k

618.2

3819.021

21

21

Two mode shapes (relative participation of each mass in the motion):

1

618.12 2

1

2 k

mk

A

A shape mode 1st

1

618.02

1

2

mk

k

A

Ashape mode 2nd

The two eigenvectors are orthogonal:

618.1

1)1(

2

)1(1

A

A

618.0

1)2(

2

)2(1

A

AEigenvector (1) = Eigenvector (2) =

Undamped free vibrations (UFV)

For any set of initial conditions:

We know {A}(1) and {A}(2), 1 and 2

Must find C1, C2, 1, and 2 – Need 4 I.C.’s

)cos()cos()(

)(22)2(

2

)2(1

211)1(2

)1(1

12

1

tA

ACt

A

AC

tx

txx

Single-DOF:

For two-DOF:

)cos()( tCtx n

UFV – Example 1

)cos(618.0

0.1)cos(

618.1

0.12211

2

1 tCtCx

xx

Given:

No phase angle since initial velocity is 0:

618.1

0.10 oxx and

618.0

0.1

618.1

0.1

618.1

0.121 CCxo

From the initial displacement:

11

21

2

;0;

T

CC

UFV – Example 2

)cos(618.0

1)171.0()cos(

618.1

1)171.1( 21 ttx

Now both modes are involved:

Solve for C1 and C2:

2

10 oxx and

2

121 618.0618.1

11

618.0

1

618.1

1

2

1

C

CCCxo

From the given initial displacement:

171.0

171.1

2

1

1618.1

1618.0

618.1618.0

1

2

1 C

C

Hence,

or

Note: More contribution from mode 1

)cos()618.0(171.0)cos()618.1(171.1)(

)cos()1(171.0)cos()1(171.1)(

212

211

tttx

tttx

Transformation of coordinates

Introduce a new pair of coordinates that represents spring stretch:

0

0)(

0

0

2

1

22

221

2

1

2

1

x

x

kk

kkk

x

x

m

m

UFV model problem:“inertially

uncoupled”

“elastically coupled”

z1(t) = x1(t) = stretch of spring 1 z2(t) = x2(t) - x1(t) = stretch of spring 2

or x1(t) = z1(t) x2(t) = z1(t) + z2(t)

Substituting maintains symmetry:

0

0

0

0)(

2

1

2

1

2

1

22

221

z

z

k

k

z

z

mm

mmm

“inertially coupled”

“elastically uncoupled”

Transformation of coordinates

We have found that we can select coordinates so that:1) Inertially coupled, elastically uncoupled, or2) Inertially uncoupled, elastically coupled.

Big question: Can we select coordinates so that both are uncoupled?

Notes in natural coordinates:

The eigenvectors are orthogonal w.r.t [M]:

The modal vectors are orthogonal w.r.t [K]:

Algebraic eigenvalue problem:

618.0

1

618.1

1

: vectors)(modal rsEigenvecto

)2(2

)2(1

2)1(2

)1(1

1A

Au

A

Au

0

0

12

21

uMu

uMuT

T

0

0

12

21

uKu

uKuT

T

222111 uMuKuMuK

Transformation of coordinates

Governing equation:

Modal equations:

Solve for these using initial conditions then substitute into (**).

0 xKxM

)()()(

)(

)()(

222

121

21

11

2

1

2211

tqu

utq

u

u

tx

tx

tqutqux

(**)

General approach for solution

We were calling “A” - Change to u to match Meirovitch

0)()((*)

0)()((*)

22222

12111

tqtqu

tqtquT

T

0)()()()( 22112211 tqutquKtqutquM (*)

Substitution:

Let

or

Known solutions

Transformation - Example

)cos()171.0(618.0

1)cos(171.1

618.1

121 ttx

2) Transformation:

618.0

1;618.1

618.1

1;618.0

22

122

21

111 u

u

u

u and

1) Solve eigenvalue problem:

)cos()0()(

)cos()0()(

171.0

171.1

)0(

)0(

)0(618.0

1)0(

618.1

1

2

1

222

111

2

1

21

tqtq

tqtq

q

q

qq

and

So

As we had before.More general procedure: “Modal analysis” – do a bit

later.

Model problem with:

0

0

2

1oo xx and

0)()(

0)()()()(

2222

1211

2211tqtq

tqtqtqutqux

and

Response to harmonic forces

Model equation:

[M], [C], and [K] are full but symmetric.

tieF

FtFxKxCxM

2

1)(

{F}not function of

timeAssume: tie

iX

iXiXx

)(

)()(

2

1

Substituting gives: FiXKCiM )(2

matrix impedance 2x2)( iZ

FiZiXiZiZ 11 )()()()(

2

1

1112

1222

21222112

1 1

F

F

zz

zz

zzzX

XX

Hence:

212 ,ji,kciωmωz ijijijij

:)(i of function are z All ij

Special case: Undamped system

Zero damping matrix [C]Entries of impedance matrix [Z]:

For our model problem (k1=k2=k and m1=m2=m), let F2 =0:

212

2222

2111

22

11111222

122

2222

111

21212

2221 ))((

)(;

))((

)(

kmkmk

FmkFkX

kmkmk

FkFmkX

Notes:1) Denominator originally (-)(-) =

(+). As it passes through 1, changes

sign.2) The plots give both amplitude and phase angle (either 0o or

180o)

Substituting for X1 and X2:

12122

222222

11111 )(;)(;)( kzmkzmkz

)()(;

)()(

)(22

221

221

222

221

221

2

1

m

FkX

m

FmkX

Multi-DOF Systems

1. Model EquationNotes on matrices Undamped free vibration: the eigenvalue problemNormalization of modal matrix [U]

2. General solution procedureInitial conditionsApplied harmonic force

Multi-DOF model equation

Model equation:

Notes on matrices:

They are square and symmetric.

[M] is positive definite (since T is always positive)[K] is positive semi-definite:

all positive eigenvalues, except for some potentially 0-eigenvalues which occur during a rigid-body motion.

If restrained/tied down positive-definite. All positive.

Q xKxCxM

1) Vector mechanics (Newton or D’ Alembert)

2) Hamilton's principles3) Lagrange's equations

We derive using:

Multi-DOF systems are so similar to two-DOF.

xKxU

xMxTT

T

21

21

:spring inenergy Strain

:energy Kinetic

UFV: the eigenvalue problem

Matrix eigenvalue problem

Equation of motion:

titi eAeAtftfuq 21)()(

0 qKqM

Substitution of

in terms of the generalized D.O.F. qi

leads to

uMuK 2

For more than 2x2, we usually solve using computational techniques.

Total motion for any problem is a linear combination of the natural modes contained in {u} (i.e. the eigenvectors).

Normalization of modal matrix [U]

Do this a row at a time to form [U].

This is a common technique for us to use after we have solved the eigenvalue problem.

We know that:

ijjT

iji CuMuuMu

1

ku

j i

j i

δij

if

if

deltaKronecker

:where

0

1So far, we pick our eigenvectors to look like:

Instead, let us try to pickso that:

1

knewk uu

12 kT

knewkT

newk uMuuMu

Then: IUMU T UKU Tand

2

22

21

..0

....

..0

0.0

n

:where

Let the 1st entry be

1

General solution procedure

For all 3 problems:

1. Form [K]{u} = 2 [M]{u} (nxn system)Solve for all 2 and {u} [U].

2. Normalize the eigenvectors w.r.t. mass matrix (optional).

Consider the cases of:

1. Initial excitation 2. Harmonic applied force3. Arbitrary applied force

oo qq and

Initial conditions

2n constants that we need to determine by 2n conditions

General solution for any D.O.F.:

Alternative: modal analysis

)cos()cos()cos()( 22221111 nnnn tCutCutCutq

Displacement vectors:

ioio qq and on

)()()()( 2211 tutututq

Uq

nn

UFV model equation:

0

0

0

ηUKUηUMU

qKqMTT

n modal equations:

0

0

0

2

2222

1211

nnn

Need initial conditions on ,

not q.

Initial conditions - Modal analysis

Using displacement vectors:

ηUMUqMU

UqTT

As a result, initial conditions:

Since the solution of

oT

o

oT

o

qMUη

qMUη

)sin()(

)cos()()(

)sin()(

)cos()()( 11

1111

ttt

ttt

nn

nonnon

oo

And then solve

hence we can easily solve for

qMUη T or

02 is:

)sin()cos()(

)cos(

ttt

tC

oo

or

ηUq

Applied harmonic force Driving force {Q} = {Qo}cos(t)

Equation of motion:

unknownη

known U

ηUq

Q qKqM

Substitution of

leads to

NtQUηUKUηUMU oTTT )cos(

requency driving fω

tQQ o

)cos(

and

Hence,

.

)cos(

)cos(

222

22

221

11

etc

tQu

tQu

oT

oT

then

ηUq

Continuous Systems

1. The axial barDisplacement field Energy approachEquation of motion

2. ExamplesGeneral solution - Free vibrationInitial conditionsApplied forceMotion of the base

3. Ritz method – Free vibrationApproximate solution One-term Ritz approximationTwo-term Ritz approximation

The axial bar

Main objectives:1. Use Hamilton’s Principle to derive the equations of

motion.2. Use HP to construct variational methods of solution.

A = cross-sectional area = uniform

E = modulus of elasticity (MOE)u = axial displacement = mass per volume

Displacement field: u(x, y, z) = u(x, t)v(x, y, z) =

0w(x, y, z) =

0

Energy approach

L tt

t

t

L L

t

t

L

dxuuAdtux

uEAdxu

x

uEA

xuudxA

t

dtdxuxx

uEAuudxA

00 0

0

2

1

2

1

2

1

0

0

221

21

21

2

1

um

x

u

x

uE)εε(Eε σ xx

energy kinetic T

U energy strain energy potentialV

densityenergy strainUo

For the axial bar:

Hamilton’s principle:

dtux

uEAdxu

x

uEA

xuA

t

t

t

L L

2

1 0 0

0

2

1

)(0t

tdtVT

221 u(Adx)ρ

V odVU

2

2

x

uE

Axial bar - Equation of motion

2

22

2

2

x

u

t

u

Hamilton’s principle leads to:

If area A = constant

0

x

uEA

xuA

t

Since x and t are independent, must have both sides equal to a constant.

Separation of variables: )()(),( tTxXtxu

)sin()cos(

02

tpBtpAT

TpT

xpDxpCX

XpX

sincos

02

Hence

1

sincos)sin()cos(),(i

iiiiiiii xpDxpCtpBtpAtxu

3

22

LM

LFE

:where

22222

2 contant p-T

dtTd

X

dxXd

Fixed-free bar – General solution

0cos0

Lp

D ii or solution) (trivial Either

= wave speed

E

For any time dependent problem:

,5,3,1 2sin

2cos

2sin),(

iii L

tiB

L

tiA

L

xitxu

Free vibration:

1

sincos)sin()cos(),(i

iiiiiiii xpDxpCtpBtpAtxu

EBC:

NBC:

0)0( u

00

LxLx x

u

x

uEA

General solution:

EBC

1

0)sin()cos(),0(i

iiiii tpBtpACtu

1

0)sin()cos(cosi

iiiiiii

Lx tpBtpALppD

x

u

0iC

2

5

2

3

2

ororLpi

),5,3,1(2

iL

ipi

NBC

Fixed-free bar – Free vibration

E

L

in 2

are the eigenfunctions

L

xi

2sin

For free vibration:

General solution:

Hence

)cos()(),( txAtxu n

are the frequencies (eigenvalues)

2

22

2

2

x

u

t

u

),5,3,1( i

Fixed-free bar – Initial conditions

or

,3,12

2

)1(

2 2cos

2sin

1)1(

)(8),(

i

io

L

ti

L

xi

i

LLtxu

Give entire bar an initial stretch.Release and compute u(x, t).

0)0,( 0

to

t

ux

L

LLxu and

Initial conditions:

Initial velocity:

Initial displacement:

0

2sin

2,3,10

iit L

xiB

L

i

t

u 0iB

22sin

2sin

2sin

2sin

,3,100

,3,1

LAdx

L

xi

L

xiAdx

L

xix

L

LL

L

xiAx

L

LL

ii

L

i

Lo

ii

o

),3,1()1()(8

2sin

)(2 2

)1(

2202

ii

LLdx

L

xix

L

LLA

io

Lo

i

Hence

Fixed-free bar – Applied force

or

txL

EA

Ftxu o

sinsinsec),(

Now, B.C’s:

)sin(

0),0(

tFx

uEA

tu

oLx

From

B.C. at x = 0:

B.C. at x = L:

0),0( tu 01 A

L

EA

FA o sec2

Hence

2

22

2

2

x

u

t

u

)sin()(),( txXtxu nwe assume:

Substituting:

txA

xAtxu

sinsincos),( 21

)sin()sin(cos2 tFtL

LAEA

x

uEA oLx

Fixed-free bar – Motion of the base

)sin()sin(),0( 1 tUtAtu o

2

22

2

2

x

u

t

u

Using our approach from before:

Resonance at:

txLxUtxu o

sinsintancos),(

oUA 1

L

UA o tan2

Hence

txA

xAtxu

sinsincos),( 21

0sincossin 2 tLALU

x

u oLx

0

Lxx

uEA

From

B.C. at x = 0:

B.C. at x = L:

or,2

3,

2

L.,

2

3,

2etc

LL

Ritz method – Free vibration

Start with Hamilton’s principle after I.B.P. in time:

Seek an approximate solution to u(x, t):In time: harmonic function cos(t) ( = n)

In space: X(x) = a11(x)

where: a1 = constant to be determined

1(x) = known function of position

dtdxuxx

uEAuuA

t

t

t

L

2

1 00

1(x) must satisfy the following:

1. Satisfy the homogeneous form of the EBC.

u(0) = 0 in this case.2. Be sufficiently differentiable as required

by HP.

One-term Ritz approximation 1

Ritz estimate is higher than the exactOnly get one frequencyIf we pick a different basis/trial/approximation function 1, we would get a different result.

)cos()cos()(

)cos()cos()(),()(

1

1111

txtxu

txatxatxuxx

:eapproximat Also

:Pick

dttdxEAxxAat

t

L)(cos)1)(1())((0 2

0

21

2

1

Substituting:

222

23

2 33

3

L

E

LLEA

LA

LLRITZ

732.13

LLEXACT

571.12

1010

22 adxEAadxxALL

Hence

aKaM 2:formmatrix in

L

xEXACT

2sin1

xRITZ 1

One-term Ritz approximation 2

Both mode shape and natural frequency are exact.But all other functions we pick will never give us a frequency lower than the exact.

L

xx

2sin)(1

:pick we ifWhat

dttdxL

x

LEA

L

xAa

dtdxuxx

uEAuuA

t

t

t

L

t

t

L

)(cos2

cos22

sin0

0

2

0

2

2

221

0

2

1

2

1

Substituting:

EXACTRITZ L

E

L

22Hence

)cos(2sin)cos()(

)cos(2sin)cos()(),(

1

111

tLxtxu

tLxatxatxu

:eapproximat Also

L

x

Ldx

d

2cos

21

Two-term Ritz approximation

221)( xaxaxX :Let

dtdxxaaEAxxaxaAt

t

L

2

1 0 212

212 )1()2()(0

where:

:1 xu eapproximat If

xaadx

dX21 2

:2xu eapproximat If dtdxxxaaEAxxaxaAt

t

L

2

1 0 2122

212 )2()2()(0

2

1

2221

1211

2

1

2221

12112

a

a

KK

KKE

a

a

MM

MM

5))((

4))((

3))((

5

0

2222

4

0

22112

3

011

LdxxxM

LdxxxMM

LdxxxM

L

L

L

In matrix form:

3

4)2)(2(

)1)(2(

)1)(1(

3

022

2

02112

011

LdxxxK

LdxxKK

LdxK

L

L

L

Two-term Ritz approximation (cont.)

E

22 and

LaaLaL 4526.00)3785.01713.0( 2212

0

0

)534()4(

)4()3(

2

1

532422

42232

a

a

LLLL

LLLL

leads to

Solving characteristic polynomial (for det[ ]=0) yields 2 frequencies:

LL RITZRITZ 67.5)(5767.1)( 21 and

Substitution of:

LL EXACTEXACT 7123.4)(5708.1)( 21 and

Mode 1:

Let a1 = 1:

LxxxX 21 4526.0)(

:1 shape Mode

LaaLaL 38.10)10.5043.7( 22122

Mode 2:

LxxxX 22 38.1)(

:2 shape Mode