Advanced microprocessor systems - New Jersey Institute …rlopes/Mod1.3.pdf · Microprocessor...

Post on 12-Apr-2018

221 views 2 download

Transcript of Advanced microprocessor systems - New Jersey Institute …rlopes/Mod1.3.pdf · Microprocessor...

Advanced microprocessor systems

FirstTransistorMicroprocessorEvolution

DiscreteTransistors

Bipolar

FET

PlanarTransistors

BJTFET

1971 1972

10,000nm 10,000nm

808629000transistors3000nm

1978 1985

80386275000transistors1500nm

1993 1995

Pentium3.1Mtransistors800nm

PentiumPro5.5Mtransitors500nm

2006

PentiumDPresler362Mtransistors65nm

2007

Core2DuoWolfdale411Mtransistors45nm

2011 2016

8-corei7Haswell2.6Btransistors22nm

22coreXeonBroadwell7.2Btransistors14nm

HilevelCrosssection

Microprocessorcircuitsonchip

Clock

Graphics

Network Comm.

Mass Storage

A/VI/O Control

ROM/FLASH

CPU

Peripherals

Power

SCSIIDE/ATA/SATAFDDI

USBIEEE488Bluetooth

Hypertransport/PCI express

10/100bT/Gb/802.11

PCI express RAML1/L2/L3

Advanced Microprocessor System Block Diagram

DDR1,2,3,4-SDRAM

1.8 – 3.8 GHz

Dual SLI

Wireless, Ethernet, Optical

SATA, RAID, DVD, Blueray

Keyboard, Mouse, scanner, USB

Up to 1KW, water cooling

3D sound,Joystick,

CPUAdvancementMechanisms:

1)Advancesinprocessorarchitecture:

RISCPipeliningSuperscalarOut-of-orderexecution

RISC- asystemthatusesasmall,highly-optimizedsetofinstructionsthattypicalyexecuteinoneclockcycle,ratherthanamorespecializedsetofinstructionsthatmayrequireseveralclockcycles.TherearemanytraitsassociatedwithRISC.Forexample,mostmachinesareimplementedwithmultipleinternalbusessimilartoaHarvardarchitecture.AnothercommontraitisthatRISCsystemsusetheload/storearchitecture,wherememoryisnormallyaccessedonlythroughspecificinstructions,ratherthanaccessedaspartofotherinstructionslikeanadd.

Pipelining- atechniqueusedinthedesignofcomputerstoincreasetheirinstructionthroughput.Ratherthanprocessingeachinstructionsequentially,eachinstructionissplitupintoasequenceofstepswhichareexecutedwithinasmalloffsetfromoneanother.Thus,differentstepscanbeexecutedconcurrently(bydifferentcircuitry),andalmostinparallel.

Superscalar- aformofparallelismcalledinstruction-levelparallelismwithinasingleprocessor.ACPUexecutesmorethanoneinstructionduringaclockcyclebysimultaneouslydispatchingmultipleinstructionstoredundantfunctionalunitsontheprocessor.

Out-of-orderexecution– ACPUtechniqueinvolving:

• fetchinginstructionsinacompiler-generatedorder

• Theinstructionsaredynamicallyscheduled

•Inbetweentheymaybeexecutedinsomeotherorder

•Independentinstructionsbehindastalledinstructioncanpassit

•Instructionsarereshuffledbackintothecorrectorderforwriteback stage

CPUAdvancementMechanisms:

2)Advancesinprocessormanufacturing:Lithographyprocesses:

Opticale-beamX-rayExtremeUV

OpticalLithography-aphotograhic processusedtopatternpartsofasemiconductorfilmorthematerialof asubstrate.Ituseslighttotransferageometricpatternfromaphotomask toalight-sensitivechemical"photoresist”,onthesubstrate.Aseriesofchemicaltreatmentstheneitherengravestheexposurepattern,orenablesdepositionofanewmaterialinthedesiredpattern.

e-beamLithography- isthepracticeofscanningafocusedbeamofelectronstodrawcustomshapesonasurfacecoveredwithanelectronsensitivefilmcalledaresist.Thepurpose,aswithphotolithography,istocreateverysmallstructuresintheresistthatcansubsequentlybetransferredtothesubstratematerial,oftenbyetching.Usingthistechnique,sub10nmstructurescanbecreated.

X-rayLithography- usesX-raystotransferageometricpatternfromamasktoalight-sensitivechemicalphotoresist onasubstrate.Aseriesofchemicaltreatmentsthenengravestheproducedpatternintothematerialunderneaththephotoresist.Usingthistechnique,sub1nmstructurescanbecreated.

ExtremeUVLithography- anext-generationlithographytechnologyusinganextremeultraviolet(EUV)wavelength,currentlyexpectedtobearound13.5nm.Usingthistechnique,sub20nmstructurescanbefabricated.

CPUAdvancementMechanisms:

3)Advancesinprocessorimplementations:

SemiconductorcomputingOpticalcomputingMolecularcomputingQuantumcomputing

Timelineofcomputationalimplementations27

00BC

1900

AD

1945

AD

1960

AD

Mechanical Electronic Semiconductor

2014

AD

1945

AD

Optical

1970

AD

1994

AD

Molecular

Quantum 2014

AD

2014

AD

2014

AD

Semiconductorcomputing- Siliconisonlyoneoutofmanydifferentsemiconductormaterials.A combinationoftheelementsgalliumandarsenicformscrystalswhichpermitelectronstomovefasterthaninsilicon,sothatthismaterialissometimesusedwhenextremespeedisimportant.Themainreasonthatsiliconisusedincomputersisbecauseitiseasier,andthereforelessexpensive,tomakecomplicatedcircuitsoutofsiliconthanforanyothermaterial.Computercircuitsalsorequiresomepartstobemadeoutofinsulatorsinadditiontothepartsthataresemiconducting.Withsilicon,itiseasytomakeagoodinsulatorbyaddingsomeoxygentoproducesiliconoxide.Theaveragecostisnowmuchlessthanonepennyper10,000transistors.

Opticalcomputing- usesphotonsproducedbylasersordiodesforcomputation.Photonspromisetoallowahigherbandwidththantheelectronsusedinconventionalcomputers.Photoniclogicistheuseofphotons(light)inlogicgates(NOT,AND,OR,NAND,NOR,XOR,XNOR).Switchingisobtainedusingnonlinearopticaleffectswhentwoormoresignalsarecombined.

Molecularcomputing- aformofcomputingwhichusesDNA*,biochemistryandmolecularbiology,insteadofthetraditionalsilicon-basedcomputertechnologies.Itisinitsinfancyandiscurrentlythesubjectofresearch.

*AbioengineerandgeneticistatHarvard’sWyssInstitutehavesuccessfullystored5.5petabits ofdata— around700terabytes— inasinglegramofDNA,smashingthepreviousDNAdatadensityrecordbyathousandtimes.

Quantumcomputing- acomputationdevicethatmakesdirectuseofquantum-mechanicalphenomena,suchassuperpositionandentanglement,toperformoperationsondata.Quantumcomputingisstillinitsinfancybutexperimentshavebeencarriedoutinwhichquantumcomputationaloperationswereexecutedonaverysmallnumberofqubits. Bothpracticalandtheoreticalresearchcontinues todevelopquantumcomputersforbothcivilianandnationalsecuritypurposes,suchascryptanalysis.

28

Advanced Microprocessor System Block Diagram

Colorkey:Red=processorBlack=I/OLt.gray=singlechipDarkgray=containedonchip

OMAP4430 die

Bump Underfill

Package size

Footprint (top side)

Footprint(bottom side)

intro-003

Top memory MCP package

Memory interface

Bottom PBGA547 OMAP4430POP package 0.4-mm pitch

12 x 12 mm

intro-004

Public Version

Package-On-Package Concept www.ti.com

1.4 Package-On-Package ConceptThe OMAP4430 die uses flip-chip technology. The OMAP4430 package-on-page (POP) device supportsmemory stacking using a POP implementation.The OMAP4430 die provides two LPDDR2 interfaces. Each interface supports up to two chip-selects, soup to four LPDDR2 memory dies are supported. Those interfaces are available only on device top ball out.The two stacked memory packages are directly connected to the two LPDDR2 EMIF4D interfaces of theOMAP4430 die.Figure 1-3 shows the concept of the POP solution, and Figure 1-4 shows stacked memory package on thePOP device.

Figure 1-3. POP Concept

Figure 1-4. Stacked Memory Package on the POP Device

Two types of LPDDR - SDRAM memories are supported in POP package: S4 and S2 with size up to 2GBand 32-bit data width.The POP device includes feedthroughs. The feedthroughs are defined from the bottom ball-grid array(BGA) to the stacked memory. The purpose of some of the feedthroughs is to provide power supply to thestacked memories.

270 Introduction SWPU231R–July 2010–Revised March 2011

© 2010–2011, Texas Instruments Incorporated

Stackedmemorypackage-on-package(POP)device

QuadCore14nm1.6GHzBaseFrequency2.4GHzBurstFrequency