A High-Frequency DC-DC Converter for the Next Generation ... · 2. Next Generation Train (NGT) -...

Post on 27-Oct-2019

11 views 0 download

Transcript of A High-Frequency DC-DC Converter for the Next Generation ... · 2. Next Generation Train (NGT) -...

A High-Frequency DC-DC Converter for the Next Generation Train (NGT) CARGO HFC Concept

Athanasios Iraklis, Toni Schirmer, Holger Dittus, Joachim WinterGerman Aerospace Center (DLR), Stuttgart & Berlin, GermanyInstitute of Vehicle Concepts | Vehicle Energy Conceptsathanasios.iraklis@dlr.de

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 1

07th June 2018Athanasios IraklisDLR

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Medium Frequency Transformer (MFT)4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 2

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Medium Frequency Transformer (MFT)4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 3

DLR Overview

• Exploration of the Earth and the solar system• Research aimed at protecting the environment• Development of environmentally-friendly technologies

to promote mobility, communication and security• Approx. 8,000 employees • 33 research institutes and facilities• 20 locations• Branch offices in Brussels, Paris, Tokyo and Washington

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 4

AERONAUTICS SPACE ENERGY TRANSPORT SECURITYTransport

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Medium Frequency Transformer (MFT)4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 5

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 6

NGT LINK

NGT CARGO

NGT HST

Freight train with automatic-moving intermediate cars (e.g. for packages) [3]

Feeder train, driving power 2.5 MW, operatingspeed 230 km/h [2]

Ultra-high-speed train, driving power 16 MW, operating speed 400 km/h [1]

Next Generation Train (NGT)Project overview

• Increase of the approved speed• Reduction of specific energy usage• Noise reduction• Greater customer comfort• Improvement of driving safety• Reduction of wear and lifecycle costs• Cost-effective construction through modularization and

system integration• Increased efficiency of development and approval

processes

[1] J. Winter, S. Kaimer, C. Kalatz, J. Pagenkopf, S. Streit, N. Parspour, M. Böttigherimer, D. Bögle and S. Mayer, "Fahrdrahtlose Energieübertragung bei Schienenfahr-zeugen des Vollbahnverkehrs," 2014.[2] D. Krüger and J. Winter, "NGT LINK: Ein Zugkonzept für schnelle doppelstöckige Regionalfahrzeuge," in ZEVrail-Zeitschrift für das gesamte System Bahn, pp. 442-449, 2017.[3] J. Winter, M. Boehm, G. Malzacher and D. Krueger, "NGT CARGO– Schienengüterverkehr der Zukunft," in Internationales Verkehrswesen 69, pp. 82-85, 2017.

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 7

Next Generation Train (NGT)Project overview

• Increase of the approved speed• Reduction of specific energy usage• Noise reduction• Greater customer comfort• Improvement of driving safety• Reduction of wear and lifecycle costs• Cost-effective construction through modularization and

system integration• Increased efficiency of development and approval

processes

THIS WORK

NGT LINK

NGT CARGO

NGT HST

Freight train with automatic-moving inter. cars(e.g. for packages) [3]

Feeder train, driving power 2.5 MW, operatingspeed 230 km/h [2]

Ultra-high-speed train, driving power 16 MW, operating speed 400 km/h [1]

[1] J. Winter, S. Kaimer, C. Kalatz, J. Pagenkopf, S. Streit, N. Parspour, M. Böttigherimer, D. Bögle and S. Mayer, "Fahrdrahtlose Energieübertragung bei Schienenfahr-zeugen des Vollbahnverkehrs," 2014.[2] D. Krüger and J. Winter, "NGT LINK: Ein Zugkonzept für schnelle doppelstöckige Regionalfahrzeuge," in ZEVrail-Zeitschrift für das gesamte System Bahn, pp. 442-449, 2017.[3] J. Winter, M. Boehm, G. Malzacher and D. Krueger, "NGT CARGO– Schienengüterverkehr der Zukunft," in Internationales Verkehrswesen 69, pp. 82-85, 2017.

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Medium Frequency Transformer (MFT)4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 8

Motivation• Different systems, concepts and niche applications in rail logistics• Great technical effort in goods handling and train formation

Objective• Development of an efficient overall concept (intercontinental)

High-speed freight train NGT CARGOAutonomous, self-powered cars

Automated cargo handlingMore freight transport by rail

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 9

Next Generation Train (NGT)-CARGO

Conventional Traction System Concept

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 10

Next Generation Train (NGT)-CARGO

End car:

- AC/DC Catenary-powered- Low Frequency Transformer- AC-DC Active Rectifier- Intermediate Circuit (Filter)- HVDC Link- 8 x Traction Drives- Individually Driven Wheels- Auxiliary Power Unit (APU)

Intermediate car:

- Traction Battery-powered- DC-DC Isolation Converter

- Intermediate Circuit (Filter)- HVDC Link- 8 x Traction Drives- Individually Driven Wheels- Auxiliary Power Unit (APU)

Motivation• Reduction of specific energy usage:

• Reduced mass and volume, increased efficiency characteristics for voltage transformation & rectification• Modularization and self-powered railcars:

• Multiple power modules for increased controllability and redundancy, utilization of components with lowerratings

• Integration of different sub-systems:• HV AC link, primary and secondary HV DC links, hybridization (Li-ion battery, fuel-cell, charging systems)

Objectives

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 11

Next Generation Train (NGT)-CARGOMedium Frequency Transformer (MFT)

Motivation• Reduction of specific energy usage:

• Reduced mass and volume, increased efficiency characteristics for voltage transformation & rectification• Modularization and self-powered railcars:

• Multiple power modules for increased controllability and redundancy, utilization of components with lowerratings

• Integration of different sub-systems:• HV AC link, primary and secondary HV DC links, hybridization (batteries, fuel-cells, charging systems)

Objectives• Identify suitable MFT topology for NGT-CARGO (focus on intermediate railcars)• Requirements-based component selection• Model-based performance analysis

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 12

Next Generation Train (NGT)-CARGOMedium Frequency Transformer (MFT)

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Medium Frequency Transformer (MFT)4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 13

Concept

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 14

MFT Sub-system Concept and Requirements

Electrical interface

Multiple input/output ports

Galvanic isolation

Hybrid system integration

High frequency operation

Modular design

Distributed power system

TRACK-sideDC Link

ON-BOARD DC Link

InductiveCharging

Battery /Fuel Cell

Concept

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 15

MFT Sub-system Concept and Requirements

Electrical interface

Multiple input/output ports

Galvanic isolation

Hybrid system integration

High frequency operation

Modular design

Distributed power system

Higgh freqquencyy opperation

Egg-laying Wool-Milk-Sow

BESS/FC

TRACK-sideDC Link

ON-BOARD DC Link

Battery /Fuel Cell

InductiveCharging

[4] https://www.joyfullness.net/wp-content/uploads/2017/04/wollmilchsau-S-300x300.jpg

[4]

Literature Review

Results of Literature Review:Pros & ConsVoltages, Frequencies, EfficiencyIsolation setups# Power modules, # Power switches

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 16

MFT Sub-system Concept and Requirements

3-stageMulti-separated

2-stageMulti-separated

3-stageMulti-winding

[6]

[5]NGT CARGO Power Requirements

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 17

MFT Sub-system Concept and Requirements

End car:

- 14.5 MWMAX at catenary- 13.5 MWMAX at DC Link- 25 kVAC/50 Hz, 15 kVAC/16.7 Hz - Reconfigurable: 3 kVDC, 1.5 kVDC

- 3 kVDC at DC Link (nominal)

Intermediate car:

- 1.5 MWMAX at secondary DC Link- 1.5 kVDC at secondary DC Link- Self-powered for 25 km:

Battery Capacity 42.5 kWhNOM

325 kWMAX at 800 VNOM (585-910 V)- 26 kW Fuel Cell Range Extension (FCRE):

Utilization of LVDC (85-180 V [6])300 AMAX (30 kWMAX [6])

- Galvanically isolated sub-systems

[5] AKASOL AKASYSTEM 18 AKM 53 NMC[6] Ballard FCveloCity®-MD 30 kW

MFT Sub-system Concept – End Car

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 18

MFT Sub-system Concept and Requirements

25 kVAC/50 Hz, 15 kVAC/16.7 Hz

Rail

Module N

Module 1

Module 2

PrimaryDC-link

AC-DCCB

1

1

1

Lf

DC-MFAC MFT MFAC-DC

BESS

SecondaryDC-link

TractionInverter& APU

SW

3M

A

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

End car Intermediate car

Loads Loads

FCRE

BESS

FCRE

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

rrIntermediate car

Loads

BESS

FCRE

Pantograph

AC-DC Rectifier

Primary DC Link

DC-MFAC Converter

Multi-winding MFT

MFAC-DC Converter

Secondary DC Link

BESS+FCRE

Loads

BESS

FCRE

MFT Sub-system Concept – Intermediate Car

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 19

MFT Sub-system Concept and Requirements

25 kVAC/50 Hz, 15 kVAC/16.7 Hz

Rail

Module N

Module 1

Module 2

PrimaryDC-link

AC-DCCB

1

1

1

Lf

DC-MFAC MFT MFAC-DC

BESS

SecondaryDC-link

TractionInverter& APU

SW

3M

A

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

End car Intermediate car

Loads Loads

FCRE

BESS

FCRE

25 kVAC/50 Hz, 15 kVAC/16.7 Hz

Rail

Module N

Module 1

Module 2

PrimaryDC-link

AC-DCCB

1

1

1

Lf

DC-MFAC MFT MFAC-DC

BESS

SecondaryDC-link

TractionInverter& APU

SW

3M

A

rrEnd car

Loads

FCRE

Primary DC Link

DC-MFAC Converter

Multi-winding MFT

MFAC-DC Converter

Secondary DC Link

BESS+FCRE

Loads

Multi-port Sub-system Design

MFT Sub-system Concept – General Project Workflow

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 20

MFT Sub-system Concept and Requirements

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

Multi-port Sub-system Design

Single-port Module Analysis

MFT Sub-system Concept – General Project Workflow

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 21

MFT Sub-system Concept and Requirements

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

SecondaryDC-link

PrimaryDC-link

Multi-port Sub-system Design

Single-port Module Analysis

MFT Sub-system Concept – General Project Workflow

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 22

MFT Sub-system Concept and Requirements

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

SecondaryDC-link

PrimaryDC-link

Model Extension

Controls

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Propulsion System-MFT4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 23

Single-port MFT Model

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 24

Modelling Methodology

SecondaryDC-link

PrimaryDC-link

PWM

Single-port MFT Model

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 25

Modelling Methodology

SecondaryDC-link

PrimaryDC-link

Input OutputMFTPrimaryH-Bridge

SecondaryH-Bridge

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Single-port MFT Model

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 26

Modelling Methodology

0 A at

0 kHz,

Input OutputMFTPrimaryH-Bridge

SecondaryH-Bridge

Vin: Fixed DC input voltage

Ro: Fixed resistance as loadCo: Lossless DC smoothing capacitor

Full Active Bridge (FAB) x 2= Dual Active Bridge (DAB)Qx: Ideal N-channel MOSFETs

Rp/s: Winding resistancesLp/s: Leakage inductances

Equivalent magnetic circuitfor magnetic isolation

Ideal N-channel MOSFETOn-state (VGS TH): Drain-source path = Drain-source on resistance, Rds(on)

Off-state (VGS < VTH): Drain-source path = Off-state conductance, Gds(off)

VGS: Gate-source voltageVTH: Threshold voltage

Anti-parallel Source-Drain DiodeProtection diode with no dynamicsOn-state (VD VT): Forward voltage, VfT = VT + If*Rd(on)

Threshold voltage, VT = 0.975+(TJ*(-1.4)/1000)On resistance, Rd(on) = 0.053+(TJ*1.1/1000)TJ: Diode junction temperature in degrees Celcius

Off-state (VD < VT): Off-state conductance, GD(off)

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 27

Modelling Methodology

2p/switch

MagneticCore

ConcentricWindings

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 28

Modelling Methodology

Equivalent magnetic circuit:

Magnetomotive force: MMFp = Np*IpNp: Number of windings of primary coilIp: Current of primary winding

Magnetic reluctance: Rx = Lx/( 0* r_x*Ax)Magnetic flux: = MMFp/(Rx+...Rn) (OC)

Lx: Length of magnetic element0: Permeability constantr_x: Relative permeability of magnetic element,

Ax: Cross-sectional area of magnetic element

Induced voltage: Vs = -Ns*d /dtNs: Number of windings of secondary coil

Magnetic Isolation Stage

Air-gap

N

MagneticCore

ConcentricWindings

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 29

Modelling Methodology

Rectactular wire:

Skin depth: = sqrt(1/( *f* 0* r* w))AC resistance:

RAC= Lw/( w*W*T) = RDC

when 2 Ww or 2 Tw

RAC= Lw/( * w*(2Ww+2Tw-4 ))when 2 < Ww or 2 < Tw

f: Frequency0: Permeability constantr: Relative permeability of wirew: Conductivity of wire

Lw, Ww, Tw: Length, width and thickness of wire

Magnetic Isolation Stage

Air-gap

NVin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Magnetic Isolation Stage

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 30

Modelling Methodology

g

Interleaved windings:

Leakage inductance: LL = 0*N^2*Lm* *k0: Permeability constant

N: Number of turns of the windingLm: Mean length per turn for whole arrangement: Relative leakage conductance

k : Rogowski factor (~1 for most arrangemenets)

Leakage inductance (Rogowski k = 1):LL = 0*N^2*Lm*( Xperp-lf/3+ )/(nif^2*Xpar-lf)

0: Permeability constantN: Number of turns of the windingLm: Mean length per turn for whole arrangement

Xperp-lf: Sum of dimensions of sub-windings perpendicularto leakage flux

: Sum of thicknesses of insulating interspacesnif: Number of insulating interspacesXpar-lf: Dimension of sub-windings parallel to leakage flux

1Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Switching Controls – Phase-Shift (PS: , D)

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 31

Modelling Methodology

0 A at

0 kHz,

2 3

Available PS methods:

Single PS ( 1)

Dual PS ( 1, 2, 3 = 2 or

180° for Extended PS)

Triple PS ( 1, 2, 3)

D: Duty cycle

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Switching Controls – Phase-Shift (PS: , D)

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 32

Modelling Methodology

Available PS methods:

Single PS ( 1)

Dual PS ( 1, 2, 3 = 2 or

180° for Extended PS)

Triple PS ( 1, 2, 3)

D: Duty cycle

SPS: Low control design complexity.

If the voltages on both sides of the transformer do not match,

rms and max currents are high. Soft switching hard to realize.

DPS: Medium control design complexity (favors multi-port setups).

Improved flexibility of the control and improved performance.

TPS: Improved performance at light load (wider soft-switching).

High control design complexity (especially for multi-port setups).

1

2 3

[7] Jiang, L., Sun, Y., Su, M., Wang, H. and Dan, H., 2018. Optimized Operation of Dual-Active-Bridge DC-DCConverters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads. Journal of Power Electronics, 18(1), pp.45-55.

[7]

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Propulsion System-MFT4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 33

Input/Output Ports

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 34

Technical Specifications of Single-port MFT Model

Input Output

Fixed DC input voltage, Vin =750 VDC

Output (load) resistanceRo = 1.5 m (350 kW, 500 Aat 700 VDC)DC smoothing capacitorCo = 30 F (~±75 V at 100kHz, 500 A)

Ideal N-channel MOSFET (1.7 kV SiC MOSFET)Drain-source on resistance, RDS(on) = 8 m , typical at VGS = 20 V, IDS = 300 AOff-state conductance, GDS(off) = 0.41 SThreshold voltage, VTH = 2.5 V, typical at VD = VG, ID = 15 mASwitching frequency, fsw = 100 kHzDuty Cycle, D = 50 %

Anti-parallel Source-Drain Diode (1.7 SiC Schottky Diode)Forward voltage, VfT = VT + If*RD(on)

Junction temperature, TJ = 25°CThreshold voltage, VT = 0.94 VOn resistance, RD(on) = 80.5 mOff-state conductance, GD(off) = 11.76 nS

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 35

Technical Specifications of Single-port MFT Model

1.7 kV, 325 A

SiC module

MagneticCore

ConcentricWindings

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Magnetic Isolation Stage

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 36

Modelling Methodology

Air-gapfsw = 100 kHz

0 = 4 *10^(-7) H/mr ~ 1w = 5.98*10^7 S/m (copper)

Skin depth: = 0.205 mmN = 1 turn/windingW = 250 mmCurrent density, J ~ 1-1.5 A/mm^2 (low)T = 0.025 mm (foils) > (100% utilization)Foil number: Npf = 80 (interleaved foils)Insulation thickness, Ti = 1.5 mm (2x30 mil)

Nomex® paper Type 410 Dielectric strength, 1.6 kV/mmBasis weight, mi = 1678 g/m^2

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Magnetic Isolation Stage

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 37

Modelling Methodology

Maximum core flux density, BMAX = 0.4*BSAT

Nanocrystalline VITROPERM 500FBSAT =1.2 T

r = 20000d = 7.35 g/cm^3PFe = 80 W/kg (100 kHz, 0.3 T)

MagneticCore

ConcentricWindings

Air-gap

Vin: 750 VDC

Ro: 1.5 m (350 kW, 500 A at 700 VDC)Co: 30 F (±10 % at 100 kHz,500 A)

Magnetic Isolation Stage

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 38

Modelling Methodologynif = 24 insulating interspaces

Windings window: 250 mm x 40 mmBMAX = 0.4*BSAT: BMAX = 0.48 TAir-gap length, La = 0.5 mm formaximum flux MAX = 0,0012 WbAc1 = 2500 mm^2 (5 cm x 5 cm)

Ac2,3 = 1250 mm^2 (2.5 cm x 5 cm)Core: Vc = 0.0017 m^3, mc = 12.5 kg, Pl_c = 1 kW @ 100 kHz, 300 mTLm = 36 cm

LL = 0.751 HRAC = RDC = 12.04

0

1

5

2

3

Leak

age

Indu

ctan

ce [H

]

10 -6

4

5

10 100

nif (insulating interspaces)

8015

Npf (parallel foils)

6020 4025 20

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 -6

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Propulsion System-MFT4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 39

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 40

Efficiency Analysis

Dual PS (sensitivity on 1, 2, 3 = 180°)

00

200

-1 5

Io (A

)

400

-2 410 -6 3

10 -6-3

600

2-4 1

-5 0

00

200

-1

400

5

Vo (V

)

600

-2 410 -6

800

310 -6

-3

1000

2-4 1

-5 0

00

100

-1

200

5

Po (k

W)

300

-2 410 -6

400

310 -6

-3

500

2-4 1

-5 0

It is possible to cope with Po greater than 350 kW

The selection of 1 on fixed 2 or 2 on fixed 1 becomes

complicated for PI controller

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 41

Efficiency Analysis

Dual PS (sensitivity on 1, 2, 3 = 180°)

00

20

-1

40

5

Effic

ienc

y (%

) 60

-2 410 -6

80

310 -6

-3

100

2-4 1

-5 0

600

400

Io (A)

0200

20

0 100

40

Vo (V)

200Ef

ficie

ncy

(%)

300

60

400 500

80

600 0700

100

800 900

High efficiency within certain range of external phase 1

Potential for efficiency > 95% at high loadsDual PS does not favor light load

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 42

Efficiency Analysis

Dual PS (sensitivity on 1, 2, 3 = 180°)

00

500

-1 5

IL1r

ms

(A)

1000

-2 410 -6 3

10 -6-3

1500

2-4 1

-5 0

00

500

-1 5

IL2r

ms

(A)

1000

-2 410 -6 3

10 -6-3

1500

2-4 1

-5 0

00

500

-1 5

1000

IL1m

ax (A

)

-2 4

1500

10 -6 310 -6

-3

2000

2-4 1

-5 0

00

500

-1 5

1000

IL2m

ax (A

)

-2 4

1500

10 -6 310 -6

-3

2000

2-4 1

-5 0

High rms and peak currents

Design and controloptimization + compensationhas good potential to reducecurrents stresses

Agenda

1. DLR Overview2. Next Generation Train (NGT) - Project Overview3. Next Generation Train (NGT)-CARGO - Propulsion System-MFT4. MFT Sub-system Concept and Requirements5. Modelling Methodology6. Technical Specifications7. Efficiency Analysis8. Conclusion and Further Steps

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 43

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 44

Conclusion and Further Steps:

Defined multi-port MFT sub-system concept for hybrid NGT CARGO

Specified requirements

Defined methodology for single-port MFT design

Preliminary analysis of single-port MFT design:High power density: Reduced copper and magnetic core material due to the utilization of fsw = 100 kHzReasonably high efficiency is possible if switching losses are controlledAttention: Switching losses, coil rms and peak currents (design and controls)

Update of SiC switch model to include switching behavior

Parallelization of SiC switches to identify current distribution

Extension of model and desigh to multi-port MFT setup

Adoption of resonance-based control with definition of dead times and compensation networks

Multi-port Sub-system Design

Single-port Module Analysis

MFT Sub-system Concept – General Project Workflow

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Folie 45

MFT Sub-system Concept and Requirements

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

DC-MFAC MFT MFAC-DC

SecondaryDC-link

TractionInverter& APU

SW

3M

A

Loads

BESS

FCRE

SecondaryDC-link

PrimaryDC-link

Model Extension

Controls

M.Sc. Athanasios IraklisResearch AssociateEnergy Management and EvaluationInstitute of Vehicle ConceptsGerman Aerospace Center (DLR)E-Mail: athanasios.iraklis@dlr.deTel: +49 (0)711 6862-795

Hydrail 2018 • Athanasios Iraklis | DLR-FK • 07.06.2018DLR.de • Chart 46

Questions?