9. Well Control.ppt

Post on 11-Feb-2018

218 views 0 download

Transcript of 9. Well Control.ppt

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 1/56

PETE 661

Drilling Engineering 

Lesson 9Well Control Concepts

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 2/56

Lesson 9 - Well Control Concepts

The Anatomy of a KICK 

Kicks - Definition

Kick Detection

Kick Control 

(a) Dynamic Kick Control

(b) Other Kick Control Methods

*  Driller’s Method 

*  Engineer’s Method 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 3/56

Read:  

 Applied Drilling Engineering, Ch.6 

HW #  6  

Kick Control 

due Monday, Oct. 13, 2003 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 4/56

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 5/56

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 6/56

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 7/56

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 8/56

Causes of Kicks

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 9/56

Causes of Kicks

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 10/56

10 

Causes of Kicks

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 11/56

11 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 12/56

12 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 13/56

13 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 14/56

14 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 15/56

15 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 16/56

16 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 17/56

17 

What?

What is a kick? 

An unscheduled

entry of 

formation

fluid(s) into the

wellbore

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 18/56

18 

Why?

Why does a kick occur? 

The pressure inside thewellbore is lower 

than the formation

pore pressure (in apermeable formation). 

pw < pf  

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 19/56

19 

How?

How can this occur? 

  Mud density is too low

Fluid level is too low - trips or lost circ.

Swabbing on trips

Circulation stopped - ECD too low 

)pp( FW

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 20/56

20 

What ?

What happens if a kick is not

controlled?

  BLOWOUT !!!

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 21/56

21 

Typical Kick Sequence

1. Kick indication

2. Kick detection - (confirmation)

3. Kick containment - (stop kick influx)

4. Removal of kick from wellbore

5. Replace old mud with kill mud (heavier)

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 22/56

22 

Kick Detection and Control 

Kick Detection Kick Control

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 23/56

23 

1. Circulate Kick out of hole 

Keep the BHP constant throughout

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 24/56

24 

2. Circulate Old Mud out of hole 

Keep the BHP constant throughout

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 25/56

25 

Kick Detection

Some of the preliminary events that maybe associated with a well-control

problem, not necessarily in the order of 

occurrence, are:

1. Pit gain; 

2. Increase in flow of mud from the well 

3. Drilling break (sudden increase in

drilling rate)

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 26/56

26 

Kick Detection

5. Shows of gas, oil, or salt water 

6. Well flows after mud pumphas been shut down 

7. Increase in hook load8. Incorrect fill-up on trips 

4. Decrease in circulating pressure;

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 27/56

27 

Dynamic Kick Control[Kill well “on the fly”] 

For use in controlling shallow gas kicks 

• No competent casing seat

• No surface casing - only conductor 

•  Use diverter (not BOP’s) 

• Do not shut well in! 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 28/56

28 

Dynamic Kick Control

1. Keep pumping. Increase rate!

(higher ECD)

2. Increase mud density0.3 #/gal per circulation

3. Check for flow after each

complete circulation

4. If still flowing, repeat 2-4.

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 29/56

29 

Conventional Kick Control{Surface Casing and BOP Stack are in place}

Shut in well for pressure readings.

(a) Remove kick fluid from wellbore;

(b) Replace old mud with kill weight mud

Use choke to keep BHP constant.

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 30/56

30 

Conventional Kick Control

1. DRILLER’S METHOD 

** TWO complete circulations ** 

Circulate kick out of hole

using old mud

Circulate old mud out of hole

using kill weight mud

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 31/56

31 

Conventional Kick Control

2. WAIT AND WEIGHT METHOD 

(Engineer’s Method) 

** ONE complete circulation **

Circulate kick out of hole

using kill weight mud

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 32/56

32 

Driller’s Method - Constant Geometry

Information required: 

Well Data: 

Depth = 10,000 ft.

Hole size = 12.415 in. (constant)

Drill Pipe = 4 1/2” O.D., 16.60 #/ft 

Surface Csg.: 4,000 ft. of 13 3/8” O.D. 68 #/ft 

(12.415 in I.D.) 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 33/56

33 

Driller’s Method - Constant Geometry

Kick Data: 

Original mud weight = 10.0 #/gal

Shut-in annulus press. = 600 psi

Shut-in drill pipe press. = 500 psi

Kick size = 30 bbl (pit gain)

Additional Information required: 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 34/56

34 

Constant

 Annular 

Geometry.

Initial

conditions:

Kick has just

entered the

wellbore

Pressures 

have

stabilized

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 35/56

35 

Successful Well Control

1. At no time during the process of 

removing the kick fluid from the

wellbore will the pressure exceed the

pressure capability of 

 the formation

the casing

the wellhead equipment

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 36/56

36 

Successful Well Control

2. When the process is complete the wellboreis completely filled with a fluid of 

sufficient density (kill mud) to control the

formation pressure.

Under these conditions the well will not flow

when the BOP’s are opened. 

3. Keep the BHP constant throughout.

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 37/56

37 

Calculations

From the initial shut-in data we can

calculate:

•  Bottom hole pressure

• Casing seat pressure

• Height of kick• Density of kick fluid 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 38/56

38 

PB = SIDPP + Hydrostatic Pressure in DP

= 500

+ 0.052 * 10.0 * 10,000

= 500 + 5,200

PB = 5,700 psig 

Calculate New Bottom Hole Pressure

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 39/56

39 

Calculate Pressure at Casing Seat

P4,000 = P0 + DPHYDR. ANN. 0-4,000 

= SICP + 0.052 * 10 * 4,000

= 600 + 2,080

P4,000

= 2,680 psig 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 40/56

40 

This corresponds to a pressure gradient of 

Equivalent Mud Weight (EMW) =

psi/ft670.0ft

psi

000,4

680,2

lb/gal88.12)gal/lb)(ft/psi(

ft/psi 052.0

670.0

Calculate EMW at Casing Seat

( rmud = 10.0 lb/gal )

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 41/56

41 

 Annular capacity per ft of hole:

 bbls/ft0.13006 

gal42

 bbl 

in231

gal*in12*)5.4415.12(

4

 

L)DD(4v

3

322

2

P

2

Hx

  

  

Calculate Initial Height of Kick

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 42/56

42 

ft231 

ft7.230bbl/ft0.13006

bbl30

v

Vh 

x

BB

hole,of  bottomatkick of Height

Calculate Height of Kick

hB 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 43/56

43 

Calculate Density of Kick Fluid

The bottom hole pressure is the pressure at

the surface plus the total hydrostatic pressure

between the surface and the bottom:

 Annulus Drill String

P SICP P P SIDPP PB MA KB MD D D D

600 0052 10

. *

*(10,000-231) P 500 (0.052*10*10,000)KBD

600 5,080 P 500 5,200KB D

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 44/56

44 

Density of Kick Fluid

(must be primarily gas!)

lb/gal67.1231*052.0

20KB  r 

DP psiKB 20

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 45/56

45 

NOTE: 

The bottom hole

pressure is kept

constant while the kickfluid is circulated out of 

the hole!

In this case

BHP = 5,700 psig 

Circulate Kick Out of Hole

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 46/56

46 

Constant

 Annular Geometry 

Driller’s Method. 

Conditions When

Top of Kick Fluid

Reaches the Surface

BHP = const.

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 47/56

47 

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 48/56

48 

Top of Kick at Surface

 As the kick fluid moves up the annulus, it

expands. If the expansion follows the gas

law, then

[bottom] ]surface[

RTnZ

VP

RTnZ

VP

BBB

BB

000

00

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 49/56

49 

Top of Kick at Surface

Ignoring changes due to compressibility

factor (Z) and temperature, we get:

Since cross-sectional area = constant

.)constv(v 

hPhP.e.i

hvPhvP VPVP 

B0

BB00

BBB000

BB00

f S f

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 50/56

50 

Top of Kick at Surface

We are now dealing two unknowns, P0

and

h0. We have one equation, and need a

second one.

BHP = Surface Pressure + Hydrostatic Head

5,700 = Po + DPKO + DPMA

5,700 = Po

+ 20 + 0.052 * 10 * (10,000 - hO

)

5,700 - 20 - 5,200 = Po - 0.52 *o

BB

P

hP

T f Ki k S f

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 51/56

51 

Top of Kick at Surface

psi102,1862240P

2

684,684*4480480P

0684684P480P

231*5700*52.0PP480

0

2

0

0

2

0

2

00

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 52/56

52 

40 1,200502,000/40 2,000

8001,100

40

1,200 + 800 2,000

800 / (0.052 * 14,000) 1.10

13.514.6

1,200 * 14.6 / 13.5

1,298 psi

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 53/56

53 

50

2,000

bbls200

1,298

0

0

0

5 10 15 20 30 4025 35 45

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 54/56

54 

Csg DS DS Csg

Pressure When Circulating

Static Pressure

First Circulation Second Circulation

Driller’s 

Method

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 55/56

55 

Csg DS DS Csg

Volume Pumped, Strokes

Drillpipe Pressure

Driller’s 

Method

7/23/2019 9. Well Control.ppt

http://slidepdf.com/reader/full/9-well-controlppt 56/56

1

65

43

2

Engineer’s 

Method