3.012 Fund of Mat Sci: Structure – Lecture 21 NON ... · short laser pulse to produce marks....

Post on 25-Apr-2018

223 views 3 download

Transcript of 3.012 Fund of Mat Sci: Structure – Lecture 21 NON ... · short laser pulse to produce marks....

3.012 Fund of Mat Sci: Structure – Lecture 21

NON-CRYSTALLINE MATERIALS

Images of a silicon nanocrystal removed for copyright reasons.

Light amplification for crystalline silicon in a glassy SiO2 matrix

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Homework for Fri Dec 2

• Study: Chapter 2 of Allen-Thomas

until 2.3.1

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Last time:

1. Tensors, and their transformations

2. Orthogonal matrices

3. Neumann’s principle

4. Symmetry constraints on physical

properties

5. Curie’s principle

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Physical properties and their relation to symmetry

• Density (mass, from a certain volume)

• Pyroelectricity (polarization from temperature)

• Conductivity (current, from electric field)

• Piezoelectricity (polarization, from stress)

• Stiffness (strain, from stress)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Curie’s Principle

• a crystal under an external influence will

exhibit only those symmetry elements that

are common to both the crystal and the

perturbing influence

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Loss of periodic order

• Liquids (“fluid”)

• Glasses (“solid”)

– Oxide glasses (continuous random networks)

– Polymeric glasses (self-avoiding random walks

• Oddballs

– Quasicrystals

– Superionics

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Table of the applications of noncrystalline materials removed for copyright reasons.

Principle of operation of a CD-RW

(crystalline)

amorphous cryst

As Deposited (amorphous) After Initialisation/erase Written mark (amorphous)

Readout of data: Difference in %R between amorphous & crystalline states

E.g. %R = 5%; %R = 25%

Delta R = 20%

Erase/Write

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Principle of operation of a CD-RW

0

200

400

600

800

10-2 100 102 104 106 108 1010

C

A

B

1%

99%

Crystal

Liquid

Amorphous

tmin

o C

)

0

200

400

600

800

10-2 100 102 104 106 108 1010

C

A

B

1%

99%

Crystallize

Liquid

Amorphous

tmin

o C

)Quench

Melting temperature

Time (ns)

Tem

per

ature

(

Melting temperature

Time (ns)

Tem

per

ature

(

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005) Figure by MIT OCW.

The active layer is heated above its melting pointand quenched into the amorphous phase with ashort laser pulse to produce marks.

Writing - AmorphousIntermediate laser power is used, so that the activelayer does not melt, but rather remains within thecrystallization temperature region long enough thatthe amorphous marks re-crystallize.

Erasure – Crystalline

Erasure: nucleation and growth of crystalline material

Figure by MIT OCW. 3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Te-Sb-Ge Alloy

Nucleation dominated: 4.7 GB DVD-RAM

(Sb2Te3 to GeTe)

Growth dominated: CD-

RW, DVD-RW, Blu-ray

(Sb69Te31 eutectic)

0 0

10

20

30

40

50

60

80

90

100

Sb

Ge Sb

Ato

mic

% 70

10 20 30 40 50 60 80 90 10070

Sb2Te3

GeTe

Ge Atomic %

Growth dominated SbTeGe

3 Element Phase Diagram

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Structural Descriptors

• Long-range order

• Short-range order

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

What do ice and silicon have in common ?

Source: Wikipedia

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

What do ice and silicon have in common ?

Photo courtesy of Ansgar Walk.

What do ice and silicon have in common ?

Figure by MIT OCW. Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

What do ice and silicon have in common ?

z= Si(II) β-tin

z=6

Si(II) β-tin

z=6 z= z=

z=6

z=

z=8 z=10 z=12 z=12

Compression

Slow Pressure Release

Si(I) diamond

Si(III) BC-8 Si(IV) hex. diamond

Si(VIII) and Si(IX) tetragonal

Si(XI) Imma

Si(XII) R8

Si(V) hexagonal Si(VI) orthorhombic Si(VII) hcp Si(X) fcc

11 GPa

9 GPa 2 GPa >480 K

13 GPa 16 GPa 36 GPa 42 GPa 79 GPa

Fast Pressure Release

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005) Figure by MIT OCW.

What do ice and silicon have in common ?

-7.92

-7.90

-7.88

-7.86

-7.84

0.6 0.7 0.8 0.9 1.0 1.1

fcc hcp

bcc

sc

β-TIN 3

4

2

1

Hexagonal

Diamond

Diamond

Si

E st

ruct

ure

0.1 1.0 10 100

100

0

-100

-200

100

200

300

400

0

o C

)

Liquid

III

VII

VIII

VIV

II

IX

XI

X

Volume

(Ry

/ato

m)

Pressure (GPa)

Tem

per

atu

re (

Tem

per

atu

re (

K)

Hexagonal Ice

Figure by MIT OCW. Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Phase transitions in siliconEnergy

A

A

B

B

Volume3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Order Parameters for Silicon1

2·2 2P 1 ¦Ti V § 1 ¦T P¨ ¸N i © N i ¹

P = 40 GPaBefore compression During compression

M. J. Demkowicz and A. S. Argon, Phys. Rev. Lett. 93, 25505 (2004)

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Pair

correlation functions

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

removed for copyright reasons.See page 41, Figure 2.5 in in Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999.Graphs of the pair-distribution functions for gas, liquid/gas, and monatomic crystal

Pair correlation function: water

Courtesy of Dr. J. Kolafa. Used with Permission.

See animation at http://www.icpf.cas.cz/jiri/movies/water.htm.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Pair correlation function: water

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Count thy neighbours

Z

Thickness dr

Y

X

r

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Models of disorder: hard spheres• Bernal random close packed sphere model

Photos of the Bernal random close-packing model removed for copyright reasons.

See them at the Science & Society Picture Library: Image 1, Image 2.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Models of disorder: hard spheres• Voronoi polyhedra (in a crystal: Wigner-

Seitz cell)

Facial

Area

Solid

Angle Volume

Normal Distance

Quantitative Definitions of Voronoi Polyhedra

Figure by MIT OCW.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Mean Square Displacements

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Mean Square Displacements

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Mean Square Displacements

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)