20160810 motivating cost study - ARPA-EAcross various fusion power plant designs studies, capital...

Post on 29-May-2020

0 views 0 download

Transcript of 20160810 motivating cost study - ARPA-EAcross various fusion power plant designs studies, capital...

Motivating a Fusion Power Plant Conceptual Cost Study

ScottVitterTechnology-to-MarketSummerScholar

ARPA-Ejeffrey.vitter@hq.doe.gov |scott.vitter@utexas.edu

1

What– acoststudyforapowerplantbuiltaroundfourreactorconceptsintheALPHAprogram

What, why, and how?

2

Why– estimatecapitalcosts,assesssensitivities,influencefollow-onactivities

3

What, why, and how?

How– workwithapowerplantengineeringanddesignfirm,augmentedbyconsultantswithfusionexpertise

4

What, why, and how?

What do we mean when I say cost study?

LevelizedCostofElectricity

5

Whatwearedoing

• DirectCapitalCosts- FusionPowerCores- BalanceofPlant- TritiumExtractionPlant

What do we mean when I say cost study?

Whatwearedoing

6

• Non-CapitalCosts(limited)- Operationsandmaintenance- Tritiumhandlingandrecycling- Wastedisposal- Decommissioning

What do we mean when I say cost study?

Whatwearedoing

7

• Excluding- Costofcapital/financingcosts- Costofstart-uptritiuminventory- Thermal-to-electricefficiency- Regulatorycosts- Researchanddevelopmentcosts

What do we mean when I say cost study?

Whatwearedoing

8

Across various fusion power plant designs studies, capital cost is the largest contributor to total net present value

9

FuelO&MIncremental capitalConstruction

Itemto

tal,as%oftotalprojectNPV

1– Woodruff,S.,Miller,R.“CostSensitivityAnalysisfora100MWe modularpowerplantandfusionneutronsource.”FusionDesignandEngineering(2015).2– Miller,R.“ARIES-STdesignpointselection.”FusionDesignandEngineering(2015).3– Meier,W.,Moir,R.“AnalysesinSupportofZ-PinchIFEandActinideTransmutation- LLNLProgressReportforFY-06.”LANL(2006).

[1] [2] [3]

10

FuelO&MIncrementalConstruction

Itemto

tal,as%oftotalprojectNPV

FuelO&MIncremental capitalConstruction

[1] [2] [3] [4] [4] [4]

1– Woodruff,S.,Miller,R.“CostSensitivityAnalysisfora100MWe modularpowerplantandfusionneutronsource.”FusionDesignandEngineering(2015).2– Miller,R.“ARIES-STdesignpointselection.”FusionDesignandEngineering(2015).3– Meier,W.,Moir,R.“AnalysesinSupportofZ-PinchIFEandActinideTransmutation- LLNLProgressReportforFY-06.”LANL(2006).4– Deutch,J.,etal.“UpdateontheMIT2003FutureofNuclearPower.”MassachusettsInstituteofTechnology(2009).

Across various fusion power plant designs studies, capital cost is the largest contributor to total net present value

Calculating LCOE can be useful but is sensitive to parameters that are unknown for fusion power plants

LCOEprojectionsforPPCS-Adesign(Maisonnier,2005)usingcostinginformationfromHan,2013.LCOEmodeladaptedfromMITspreadsheetmodel(2009).Capacity =1.55GW,SpecificCapital=$3,940$/kW,FixedO&M1 =$65.8/kW/year,Var O&M2 =7.78mills/kWh1- (includesDDcosts);2- (includeswastedisposal)

Delaysleadtocostincreases(evenifdirectcapitalremainsflat)

HighOperationalAvailabilityLowmarginalcost

11

Low-riskregime

Makethemlastatleast30years

Driving for a common methodology, approach, and balance of plant to have roughly comparable results

Source:www.nerdtrek.com

4xfusionreactors

Heatexchange

Acommonbalanceofplant

12

AcommontritiumplantTritiumextractionandrecycling

Driving for a common methodology, approach, and balance of plant to have roughly comparable results

Source:www.nerdtrek.com

4xfusionreactors

Heatexchange

Acommonbalanceofplant

13

AcommontritiumplantTritiumextractionandrecycling

Howtofindacommonsetofinputs,boundaryconditions,andconstraints?

What does a control volume look like for a generic fusion reactor?

Avg.ThermalOutput(𝑃"#$)

FuelInput(D-T)

Exhaust- FusionProducts- UnburnedFuel- Waste

ThermalFluxNeutronFlux

FusionReactions

OtherMass- Driver- Target

AveragePowerIn (𝑃"&')- DriverEfficiency(η))- Energyin(𝐸&')- AveragePulseFrequency(𝑓)̅

𝑃"&' = 𝐸&' ∗ 𝑓̅η)

What are the parameters and metrics that can link four distinct fusion power cores to a common balance of plant?

Avg.ThermalOutput(𝑃"#$)

FuelInput(D-T)

KeyParametersTemperature(T)IonDensity(ni)ConfinementTime(τ)TritiumFraction(TF)BurnupFraction(BF)MassFuel(mf)

Exhaust- FusionProducts- UnburnedFuel- Waste

ThermalFluxNeutronFlux

Pfus**

OtherMass- Driver- Target

AveragePowerIn (𝑃"&')- DriverEfficiency(η))- Energyin(𝐸&')- AveragePulseFrequency(𝑓)̅

𝑃"&' = 𝐸&' ∗ 𝑓̅η)

**Note:𝑃"012 doesnotequal𝑃"#$becauseofexothermicreactionsthatmayoccurintheblanket

KeyMetricsThermalOutputRecirculatingPower

What are the dependent variables, boundary conditions, and constraints at play?

Avg.ThermalOutput(𝑃"#$)

FuelInput(D-T)

Dependant VariableCapitalCost

BoundaryConditionsPth =500MW

Exhaust- FusionProducts- UnburnedFuel- Waste

ThermalFluxNeutronFlux

Pfus**

OtherMass- Driver- Target

AveragePowerIn (𝑃"&')- DriverEfficiency(η))- Energyin(𝐸&')- AveragePulseFrequency(𝑓)̅

𝑃"&' = 𝐸&' ∗ 𝑓̅η)

ConstraintsRecirculatingpowerThermalfirstwallloadingNeutronloadingExhausthandling

- Compatibleacrossconceptsforfusionpowercore- Smallersizehasfavorablecharacteristics

- Lower-riskprofileforinvestors- Relevantandattractivetoutilities- Manufacturing/repetitionrate

17

Why Pth = 500 MW?

- Limitparasiticloads,achievesufficientnetelectricalcapacitywithlimitedfootprint

𝑃"&'

FusionReactor PowerPlant𝑃"#$ 𝑃"3,5

𝑃"'5#,5

Thermal output vs. recirculating power?

- Challenge:Reactorshouldnotexceedthermalloadingenvisionedfirstwallmaterialanddesign

- ITER– EnhancedHeatFluxPanelsdesignedfor4.7MW/m2 [1]- Armor– Beryllium- HeatSink– CuCrZr- Structure– AusteniticSteel

- ITER– DiverterSurfacedesignedfortime-averaged10MW/m2,shortdurationsupto20MW/m2[2]

- Armor- Tungsten

18

Constraint: First Wall Thermal Loading

D=2mPfus =500MWFWLoading=39.8MW/m2

D=6m Pfus =500MWFWLoading=4.4MW/m2

FortheCostStudy:

- Geometry/sizeofreactorvesselshouldreflectwallloadingconstraints.

- Dependencybetweenmaterial– thermalconstraint–geometry– cost

- Liquidfirstwallscanrelaxthermalloadingconstraint

[1]– Mazul et.al,“RussiandevelopmentofenhancedheatfluxtechnologiesforITERfirstwall.”FusionEngineeringandDesign (2012).[2]– Merola et.al,“EngineeringchallengesanddevelopmentoftheITERBlanketSystemand Divertor.”FusionEngineeringandDesign (2015).

19

Constraint: Neutronics / Neutron Shielding

- Duelobjectives:- Moderatefast(14.1MeV)neutronstothermalneutrons- Protectstructure,magnets,andpulsedpowersystemsfromneutron

damage

- Challenge:The“rightway”toscatterandmoderate14.1MeVneutronsisn’tclear.

- Challenge:Neutrondamagewillrequirereplacementofcomponents,magnets,and/orpulsedpowersystem

ITERShieldBlock[1]FortheCostStudy:

- Recognizeandquantifytheimpactthatuncertainneutronicbehaviormighthaveoncost

- Dependencybetweenshieldingtechnology– cost– neutrondamage– componentreplacementcosts

- Quantifyingtheuncertaintyintroducedbymultipleshieldingtechnologiesandunknownperformancecouldbeapositiveoutcomeofthecoststudy

Fuel cycle: there is not enough tritium (T) supply to burn without breeding + recycling

CANDUT-Stockpile~20kg

T-Stockpiledecay~1.1kg/yr

CANDUT-Production3.27kg/yr [1]

1– Nietal.,“TritiumsupplyassessmentforITERandDEMOnstration powerplant.”FusionEngineeringandDesign,88(2013)2– Sawan,M.andAbdou,M.,“Physicsandtechnologyconditionsforattainingtritiumself-sufficiencyfortheDTfuelcycle.”FusionEngineeringandDesign, 81(2006)

TConsumptionfor1GWfusion55.6kg/yr [2]

20

As currently conceived, Tritium Extraction Plants are large chemical processes

Source:Konishi etal.(2002)

21

1.HTOincoolingwater

2.Tinexhaustgases

3.Tinliquidlithiumorothermedium

Source:M.Gugla etal.

Howwilltechnologyevolve?CommoditypartofBOP,oraslarge,one-off,expensivesubsystems?ALPHAprojectteamswillbenefitfrommainlineR&D.

ScottVitter

Technology-to-MarketSummerScholarARPA-Ejeffrey.vitter@hq.doe.gov

GraduateResearchAssistantTheUniversityofTexasasAustinscott.vitter@utexas.edu

Thank you

22

What does the domestic generating fleet look like, and what might Fusion displace / replace?

Gas– 473GWCoal– 271GWWater– 107GWNuclear– 101GWWind– 76GW

Oil– 37GWSolar– 16GWBiomass– 14GWOther<8GW

2.1GW

How much of the fleet currently operating as baseload year-round (CF > 70%) ?

Total– 195GWNuclear– 101GWCoal– 50GWGas– 39GWOther<5GW

2.1GW

In 2015-2016, conversions and retirements of coal-fired power plants were driven by EPA Policy

Announcedasof2/2016(notprojections)

MATScompliancedeadlineby2016

A large Burn-up Fraction requires a smaller tritium inventory on hand

𝐵𝐹 = 𝑇91:'#

𝑇91:'# + 𝑇:5<=<>5

Larger Tritium Breeding Ratios will make-up for losses and produce excess fuel for ne reactors

Burn Rate (BR) and Tritium Breeding Ratio (TBR) are two important parameters for self-sufficiency

26

𝑇𝐵𝑅 = 𝑇9:5)𝑇91:'#

A large Burn-up Fraction requires a smaller tritium inventory on hand

𝐵𝐹 = 𝑇91:'#

𝑇91:'# + 𝑇:5<=<>5𝑇𝐵𝑅 =

𝑇9:5)𝑇91:'#

Larger Tritium Breeding Ratios will make-up for losses and produce excess fuel for ne reactors

Burn Rate (BR) and Tritium Breeding Ratio (TBR) are two important parameters for self-sufficiency

27

Fusion power core “performance” metric

Mostly agnostic to source of 14.1 MeV neutrons

Fusiondevelopmentgoal:Firstpre-commercialdemonstrationplant

CommercialPlantHandoff

PrimarilyGov’tFundedR&D

A:Now B:Endgame

When,how,andtowhom?

28

Why does it matter, who will care?

29

The Tritium Extraction Facility (TEF) needed for a fusion power plant is larger than has ever been built

- AnnualTritiumLoadatDarlingtonTritiumRemovalFacility(Canada)~3kg

>56kg - AnnualTritiumLoadatTritiumExtractionPlantfora1GWfus

InflowsofTritiumatanExtractionPlant:

1. CoolantLoopà DTRFcurrentlyextractstritiumfromheavywater

2. Tritiumbreedingmaterialà SavannahRiverSite($500M)extractstritiumfromspentfuelrods.Limitedexperienceextractingfromliquidlithium.

3. Exhaustgasà Experienceattokamakexperiments(JETinUK,TFTRatPrinceton)

Howwilltechnologyevolve?Istherightanalogyairseparationunitsatthermalpowerplants?Oraslarge,one-off,expensivesubsystems?

- Constraint:exhaustand/orwastematerialcannotinterferewithhigh-frequencypulses

- Whatisthemagnitudeofexhaustand/orwastematerialenvisioned?

- Whatlevelofvacuumisneeded(rough,middle,orhighvacuum)?

30

Constraint: Mass flow rate / exhaust flow rate

FortheCostStudy:

- Dependencybetweenmasstransport– geometry– cost

31