13.30 o2 v bubanja

Post on 11-May-2015

184 views 0 download

Tags:

description

Research 2: V Bubanja

Transcript of 13.30 o2 v bubanja

1 1

VLADIMIR BUBANJA

METROLOGY WITH SINGLE ELECTRONS

2

Single Electronics

3

Single Electronics

M.C. Esher

4

Single Electronics

M.C. Esher

5 5

Outline

• Metallic islands • Superconducting islands • Solid state entanglers

Summary

6 6

Outline

• Metallic islands • Superconducting islands • Solid state entanglers

Summary

7 7

8 8

9 9

10 10

Hamiltonian of the system:

0 ,TH H H= +

0, ,

i envi S I D

H H H=

= +∑

, ,†( ) , ( , )i l i l i l i

l

H eV c c i S D= + =∑

† 2 / 2IH c c Q Cα α αα

Σ= +∑†

envH b bα α αα

ω=∑

1 2 , ,T T T Ti i iH H H H H H+ −= + = +

1† ( )

,

†1 ( ) ( ) , ( )i t

p p i ip

H T c t c t e H Hϕα α

α

−+ − += =∑

11

1 2 1 1 1 1 2 2 2 2

1 2 1 2 1 2

( )Re[ ( , )] ( )

( ) ( )[1 ( )] ( )

( ) exp( ( ) / )

Re[ ( )]( ) [coth (cos( ) 1) sin( )]2

i

K

d d eV D eV

eV d d f f P eV

P E dt J t iEt

d ZJ t t i tR

γ ε ε ε ε ε ε

ε ε ε ε ε ε

ω ω β ω ω ωω

∝ Γ + Γ +

Γ ∝ − − +

∝ +

= − −

∫ ∫

∫ ∫

Inelastic cotunneling

12

Odintsov, Bubanja and Schön, Phys. Rev. B, 46, 6875

13

Odintsov, Bubanja and Schön, Phys. Rev. B, 46, 6875

Zorin et al., J. Appl. Phys. 88, 2665.

14 14

5j

3j

4j

4j

4j

G3 G1 Source G2 Drain

T+ G T- G2

Sou G1

G2

Source

G1

G

T+

G

T-

G3

G1 Sou G2 G4

T-

T+

T+ G2 Drain G3

G1

Source

T+ G T- G3

G1

Sou

G2

T+

G

T-

T+

G

T-

G3 G1 Sou G2

4j+Tr

4j+Tr

4j+Tr 5j+Tr

3j+Tr

4j-2p

3j-2p

Tr-3p

Pad No.2) (Pad No.1)

(Pad No.3)) (Pad No.4)

(Pad No.5)

SL_KPN3

EU Project COUNT: R-pump

Lotkhov et al, Appl. Phys. Lett. 78, 946 (2001)

15 15

-0.075 -0.05 -0.025 0.025 0.05 0.075

-0.075

-0.05

-0.025

0.025

0.05

0.075

16

Quantum Metrological Triangle

f

V I

Josephson Effect

Quantum Hall Effect

SET

2hV n fe

= I e f=

= =21 ( 1,2,...)hV I nn e

R-pump LNE, France

17 17

-0.075 -0.05 -0.025 0.025 0.05 0.075

-0.075

-0.05

-0.025

0.025

0.05

0.075

18 18

Elastic cotunneling

19 19

20 20

21 21

22 22

23 23

24 24

Current through the system:

1 2

2 40 0

1 ( ) ( )(2 ) (2 2 )

zeVI d d F F

z e α β α βπ ν

+

= Γ + Ω Ω ∫

( ) /1 2 1 1 2 2 1 2( ) ( ) e ( ,0; ,| |)i td d g g dt P tα β−×∫ ∫x x x x x x

1 2 12

1 2 0

1 2 22

1 2 0

2( ) [1 ( )] 1,2 ,( )

2( ) 1,2 ,( )

C C z EF f UC C

C C z Ef UC C

+= − + + Ω

−− + + Ω

1 ˆ( , ) ( ) ( , )I S t I t S t−= ⟨ −∞ −∞ ⟩

Bubanja, Phys. Rev. B 78, 155423 (2008)

25 25

Outline

• Metallic islands • Superconducting islands • Solid state entanglers

Summary

26 26

Hybrid SET transistor

N S

A

VL VR

VG

CG

N

27 27

Pekola et al, Nature Physics 4, 120 (2008)

28 28

29 29

Averin and Pekola, Phys. Rev. Lett. 101, 066801 (2008). Achievable error rates: 10-6 – 10-7. Therefore NISIN transistor is not suitable for metrology.

Motivation:

30 30

31 31

Z(ω)

32 32

Nucleon pairing

33 33

There is a quasiparticle on the island when gate voltage is adjusted so that:

34 34

Ec

Δ

35 35

36 36

37 37

38 38

In the resolvent formalism current can be expressed as:

39 39

Conclusion: promising for metrology, 10-8 can be achieved!

Bubanja, Phys. Rev. B 83, 195312 (2011)

40 40

Outline

• Metallic islands • Superconducting islands • Solid state entanglers

Summary

41 41

• Andreev reflection • Crossed Andreev reflection

NS interface

42 42

Nonlinear optics

Regular mirror Phase conjugating mirror

43 43

44 44

J. Feinberg, Opt. Lett. 7, 486 (1982)

45 45

N I N S e

e e

h

46 46

Bogoliubov-de Gennes approach

3 † 2BCS

3 † † *

†' , '

1H ( )[ ( ( )) ( ) ] ( )2

[ ( ) ( ) ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( )

( ), ( ') ( ')

ed r r A r U r rm i c

d r r r r r r r

r g r r r

r r r r

σ σσ

σ σ σ σ

µ

δ δ

↑ ↓ ↓ ↑

↓ ↑

+

= Ψ ∇− + − Ψ

+ ∆ Ψ Ψ +∆ Ψ Ψ

∆ = − Ψ Ψ

Ψ Ψ = −

∑∫

47 47

E / ∆

A

B

E / ∆

A

B

A: Probability of Andreev reflection B: Probability of ordinary reflection

Z=0 Z=1

Blonder, Tinkham, and Klapwijk: Phys. Rev. B 25, 4515 (1982)

20 0( ) ( ); ( ) ( ); / Fx x U x U x Z mU kδ∆ = ∆Θ = =

48 48

Wei & Chandrasekhar, Nature Physics 6, 494 (2010)

Cross-correlations measurement

Solid-state entangler

49 49

Wei & Chandrasekhar, Nature Physics 6, 494 (2010)

Experimental and theoretical results of voltage noise power at 0.4K, 0.3K, and 0.25K

50 50

Circuit influence on entanglement current

51 51

52 52

53

Bubanja and Iwabuchi, Phys. Rev. B 84, 094501 (2011)

54 54

Outline

• Metallic islands • Superconducting islands • Solid state entanglers

Summary

55 55

Summary

• We have developed theories of electron transport in: semiconducting QD’s, metallic, superconducting islands, and carbon nanotubes taking into account charging as well as the effects of the electromagnetic environment.

• Applications include most accurate SET devices and their use in metrology, computing and sensing.