1 What causes amplifier stability issues???. 2 Poles and Bode Plots Pole Location = f P Magnitude...

Post on 20-Jan-2016

214 views 0 download

Transcript of 1 What causes amplifier stability issues???. 2 Poles and Bode Plots Pole Location = f P Magnitude...

1

What causes amplifier stability issues???

2

Poles and Bode Plots

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

0

(d

egre

es)

-45o @ fP

-45o/Decade

-90o

0o

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

-20dB/Decade-6dB/Octave

fPG

0.707G = -3dB

ActualFunction

Straight-Line Approximation

R

CVIN

VOUT

A = VOUT/VIN

Single Pole Circuit Equivalent

X100,000

Pole Location = fP

Magnitude = -20dB/Decade Slope

Slope begins at fP and continues down as frequency increases

Actual Function = -3dB down @ fP

Phase = -45°/Decade Slope through fP

Decade Above fP Phase = -84.3°

Decade Below fP Phase = -5.7°

3

Zeros and Bode Plots

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

0

(d

egre

es)

+90o

0o

+45o/Decade

+45o @ fZ

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

fZ

+20dB/Decade+6dB/Octave

Straight-Line Approximation

G

1.414G = +3dB(1/0.707)G = +3dB Actual

Function

R

C

VOUT

A = VOUT/VIN

Single Zero Circuit Equivalent

X100,000

Zero Location = fZ

Magnitude = +20dB/Decade Slope

Slope begins at fZ and continues up as frequency increases

Actual Function = +3dB up @ fZ

Phase = +45°/Decade Slope through fZ

Decade Above fZ Phase = +84.3°

Decade Below fZ Phase = 5.7°

4

Capacitor Intuitive Model

frequencycontrolled

resistor

OPEN SHORT

DC XCHi-f XCDC < XC < Hi-f

XC = 1/(2fC)

5

Inductor Intuitive Model

frequencycontrolled

resistor

SHORT OPEN

DC XLHi-f XLDC < XL < Hi-f

XL = 2fL

6

Op-Amp Intuitive Model

K(f)Ro

Rin

Vo

Vout

Vdiff+

-

IN+

IN-

x1

7

Op-Amp Loop Gain Model

+

-

RF

RI

VIN

+

-

network

Aol+

-

VOUTVIN

VFB

VOUT

VFB

RF

RI

=VFB/VOUT

VOUT

network

VOUT/VIN = Acl = Aol/(1+Aolβ)

If Aol >> 1 then Acl ≈ 1/β

Aol: Open Loop Gain

β: Feedback Factor

Acl: Closed Loop Gain

8

Amplifier Stability CriteriaVOUT/VIN = Aol / (1+ Aolβ)

If: Aolβ = -1

Then: VOUT/VIN = Aol / 0 ∞

If VOUT/VIN = ∞ Unbounded Gain

Any small changes in VIN will result in large changes in VOUT which will feed back to VIN

and result in even larger changes in VOUT OSCILLATIONS INSTABILITY !!

Aolβ: Loop Gain

Aolβ = -1 Phase shift of +180°, Magnitude of 1 (0dB)

fcl: frequency where Aolβ = 1 (0dB)

Stability Criteria:

At fcl, where Aolβ = 1 (0dB), Phase Shift < +180°

Desired Phase Margin (distance from +180° Phase Shift) > 45°

9

T

Time (s)

1.95m 2.08m 2.20m

Vo

-15.00

0.00

15.00

Vfb

-2.25

0.00

2.25

VG1

0.00

10.00m

ab

Fundamental Cause of Amplifier Stability Issues

• Too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k+ VG1

Vfb

Vo

DELAY

DELAY

10

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Cause of Amplifier Stability Issues• Example circuit with too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k+

VG1

Vfb

Vo

R3 10

C1 10uC2 20p

11

Cause of Amplifier Stability Issues• Real circuit translation of too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

VoRo 10

Cin 4pCstray 16p

Cload 10u

12

Cause of Amplifier Stability Issues• Same results as the example circuit

-

+BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

VoRo 10

Cin 4pCstray 16p

Cload 10u

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

13

How do we determine if our system has too

much delay??

14

Phase Margin• Phase Margin is a measure of the “delay” in the loop

V+

V-

+

VG1 353.901124n+

-

+

U2 OPA627E

VF1

Open-Loop

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin

AOL

AOLPhase

Unity-Gain f(cl)

15

Small-Signal Overshoot vs. Phase Margin

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Phase Margin Overshoot

90° 0

80° 2%

70° 5%

60° 10%

50° 16%

40° 25%

30° 37%

20° 53%

10° 73%

16

Damping Ratio vs. Phase Margin

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

17

AC Peaking vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Phase Margin AC Peaking @Wn

90° -7dB

80° -5dB

70° -4dB

60° -1dB

50° +1dB

40° +3dB

30° +6dB

20° +9dB

10° +14dB

18

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

AOL*B

1/Beta

Rate of Closure= 20dB/decade

Rate of ClosureRate of Closure: Rate at which 1/Beta and AOL intersect

ROC = Slope(1/Beta) – Slope(AOL)

ROC = 0dB/decade – (-20dB/decade) = 20dB/decade

19

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

1/Beta

Rate of Closure and Phase MarginSo a pole in AOL or a zero in 1/Beta inside the loop will decrease AOL*B Phase!!

40dB/decade

40dB/decade

AOL pole

1/B zero

20

Rate of Closure and Phase MarginRelationship between the AOL and 1/Beta rate of closure and Loop-Gain (AOL*B) phase margin

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

a120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

100

Phase Margin≥ 45 degrees!

Rate of Closure= 20dB/decade

AOL

1/B

AOL*BPhase

AOL*B

21

Rate of Closure and Phase Margin

AOL Pole

1/Beta Zero

22

Testing for Rate of Closure in SPICE

V+

V-

+

VG1 0

+

-

+

U2 OPA627E

VF1

R1 1k R2 1k

V+

V-

+

-

+

U1 OPA627E

Vo

R3 1k R4 1k

L1 1T

C1 1T

+

VG2

Vfb

VinShort out the input source

Break the loop with L1 at the inverting input

Inject an AC stimulus through C1

• Break the feedback loop and inject a small AC signal

23

Breaking the Loop

DC AC

V-

V+

+

-

+U1 OPA627E

Vo

Rf 1k

Rg 1k

+

VG2 Vfb

Vin

L1

C1V-

V+

+

-

+U1 OPA627E

Vo

Rf 1kRg 1k+

VG1

Vfb

VinL1

C1

24

Plotting AOL, 1/Beta, and Loop GainAOL = Vo/Vin

1/Beta = Vo/Vfb

AOL*B = Vfb/Vin

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 14.14k 200.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

100

Phase Margin= 82degrees

AOL*B

1/B

AOL*BPhase

AOLV+

V-

+

-

+

U1 OPA627E

Vo

+

VG1 0

L1 1T

C1 1T

Vin

Rg 1k Rf 1k

Vfb

25

Noise Gain• Understanding Noise Gain vs. Signal Gain

Inverting Gain, G = -1 Non-Inverting Gain, G = 2

Both circuits have a NOISE GAIN (NG) of 2.

NG = 1 + ΙGΙ = 2 NG = G = 2

V+

V-

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

26

Noise Gain• Noise Gain vs. Signal Gain

Gain of -0.1V/V, Is it Stable?

Inverting Gain, G = -0.1

If it’s unity-gain stable then it’s stable as an inverting attenuator!!!

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

Noise Gain, NG = 1.1

27

Capacitive Loads

28

Capacitive LoadsUnity Gain Buffer Circuits Circuits with Gain

V+

V-

+

-

+

U1 OPA627E

VF1

R2 100kR3 249

+

VG1 0 CLoad 1uV+

V-

+

Vin

+

-

+

U1 OPA627E

Vo

CLoad 1uF

0 150u 300uTime (seconds)

80m

0

Vo (V)

T

Time (s)

0.00 150.00u 300.00u

VF1

-40.00m

-10.00m

20.00m

50.00m

80.00m

VG1

0.00

20.00m

Vin (V)

20m

-40m20m

10m

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.00m

40.00m

VG1

0.00

1.00m

0 150u 300uTime (seconds)

40m

0

Vo (V)

Vin (V)

20m

01m

29

Capacitive Loads – Unity Gain Buffers - ResultsDetermine the issue:

Pole in AOL!!

ROC = 40dB/decade!!

Phase Margin 0!!

NG = 1V/V = 0dB

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

VG1 0

L1 1T

C1

1T

Vin

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

T

Vo

ltag

e (

V)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

ltag

e (

V)

0.00

45.00

90.00

135.00

180.00

Phase Margin= 0.2degrees!

Rate of Closure= 40dB/decade!

AOL + AOL*B

1/B

AOL*BPhase

Pole in AOL

30

Capacitive Loads – Unity Gain Buffers - Theory

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

VG1

L1 1T

C4

1T

Vin

Loaded AOLRo 54

CLoad 1u

L1

+

VG1

-

+

-

+

AOL 1M

C1

+

AOL

Ro 54

CLoad 1u

Loaded AOL

31

Capacitive Loads – Unity Gain Buffers - Theory

Transfer function:

W(s)=1

1+RoCload

s

T

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Loaded AOLPole

CLoadRoFPOLE

2

1

+

Vin

Ro 54

CLoad 1u

Loaded AOL

32

Capacitive Loads – Unity Gain Buffers - Theory

X

=

T

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100

T

Vo

lta

ge

(V

)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (de

gree

s)

Frequency (Hz)

100

AOL AOL Load

Loaded AOL

33

Stabilize Capacitive Loads – Unity Gain Buffers

34

Unity-Gain circuits can only be stabilized by modifying the AOL load

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Stability Options

35

Method 1: Riso

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6+

VG1

Vo

VLoad

36

Method 1: Riso - ResultsTheory: Adds a zero to the Loaded AOL response to cancel the pole

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (

dB)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin = 87.5degrees!

Rate of Closure = 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*BPhase

Zero in AOL

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

Vo

VLoad

37

Method 1: Riso - ResultsWhen to use: Works well when DC accuracy is not important, or when loads are very light

Vo (V)

Vload (V)

Vin (V)

T

Time (s)

0.00 125.00u 250.00u

V1

0.00

20.37m

V2

0.00

20.00m

VG1

0.00

20.00m

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

Vo

VLoad

38

Method 1: Riso - Theory

V+

V-

+

-

+

U1 OPA627E CLoad 1u

L1 1T

C1 1T

Vin

Riso 5

+

VG1

Vo

Ro 54

CLoad 1u

+

VG1

-

+

-

+

AOL 1M

Riso 5

Loaded AOL

C1

Ro 54

Riso 5

Loaded AOL

CLoad 1u

+

AOL

39

Method 1: Riso - Theory

Zero Equation:

f(zero)=1

2piRisoCLoad

s

Pole Equation:

f(pole)=1

2pi(Ro+Riso)CLoad

s

Transfer function:

Loaded AOL(s)=1+CLoad

Risos

1+(Ro+Riso)CLoad

s

Ro 54Ohm

Riso 5Ohm

Loaded AOL

CLoad 1uF

+

Vin

T

Ga

in (

dB

)-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

40

Method 1: Riso - Theory

X

=

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100T

Ga

in (

dB

)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (d

egre

es)

Frequency (Hz)

100

41

Method 1: Riso - DesignEnsure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)2.) Set Riso to create AOL zero: Good: f(zero) = Fcl for PM ≈ 45 degrees. Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

fcl = 222.74kHz

f(AOL = 20dB) = 70.41kHz

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

f(AOL = 20dB)

fcl

120

80

60

40

20

0

-20

-40

Gai

n (

dB)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

42

Method 1: Riso - Design

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

F(zero) = 70.41kHz

PM = 84°

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (

dB)

Pha

se (

degr

ees)

Frequency (Hz)

100

F(zero) = 222.74kHz

PM = 52°

f(AOL = 20dB) = 70.41kHz

→ Riso = 2.26Ohms

fcl = 222.74kHz

→ Riso = 0.715Ohms

Zero Equation:

f(zero)=1

2piRisoCLoad

s

Pole Equation:

f(pole)=1

2pi(Ro+Riso)CLoad

s

Transfer function:

Loaded AOL(s)=1+CLoad

Risos

1+(Ro+Riso)CLoad

s

2.26R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

0.715R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

Ensure Good Phase Margin: Test

43

Method 1: Riso - Design

T

Ga

in (

dB)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

PM_min = 35°

F(zero) = 26.5kHzF(pole) =

2.65kHz

T

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

PM_min = 20°

F(zero) = 100.2kHz

F(pole) = 2.86kHz

Riso = Ro/9 Riso = Ro/34

Prevent Phase Dip:

Place the zero less than 1 decade from the pole, no more than 1.5 decades away Marginal: 1.5 Decades: F(zero) ≤ 35*F(pole) → Riso ≥ Ro/34 → 70° Phase Shift Desirable: 1 Decade: F(zero) ≤ 10*F(pole) → Riso ≥ Ro/9 → 55° Phase Shift

44

Method 1: Riso – Design Summary

6R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

PM_min = 35°

PM = 87.5°

Final Circuit

Summary:

Ensure stability by placing Fzero ≤ 10* Fpole

45

Method 1: Riso - Disadvantage

6R

1uFV+

V-

+

-

+U1 OPA627E

CLoad 1u

Riso 6

+

VG1

Vo

Vload

RLoad 25

25R

+ -

T

Time (s)

0.00 125.00u 250.00u

Vol

tage

(V)

0.00

20.09m20.19m

0

0 125u 250u

Vo

ltag

e (

V)

Time (seconds)

Riso Voltage Drop

Vo

VLoad

Disadvantage:

Voltage drop across Riso may not be acceptable

46

Method 2: Riso + Dual Feedback

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

VLoad

Rf 49k

Cf 100n

Vo

47

Method 2: Riso + Dual FeedbackTheory: Features a low-frequency feedback, Rf, to cancel the Riso drop and a high-frequency feedback, Cf, to create the AOL pole and zero.

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin = 87.5degrees!

Rate of Closure = 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*BPhase

Zero in AOL

V+

V-

+

-

+

U1 OPA627E CLoad 1u

+

VG1

Rf 49k

Cf 100n

VoL1 1T

C1 1T

Vfb

Vin

Riso 6

48

Method 2: Riso + Dual FeedbackWhen to Use: Only practical solution for very large capacitive loads ≥ 10uF

When DC accuracy must be preserved across different current loads

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.27m

V2

0.00

20.00m

VG1

0.00

20.00m

0 150u 300uTime (seconds)

20.3m

0

VLoad(V)

020m

20m0

Vo(V)

Vin(V)

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 5

+

VG1

Vload

R2 49k

C1 100n

Vo