1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 8 Sept 23, 2005 Nanjing...

Post on 14-Jan-2016

218 views 2 download

Transcript of 1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 8 Sept 23, 2005 Nanjing...

1

Pattern Recognition:Statistical and Neural

Lonnie C. Ludeman

Lecture 8

Sept 23, 2005

Nanjing University of Science & Technology

2

May be Optimum

3

Review 2: Classifier performance Measures

1. A’Posteriori Probability (Maximize)

2. Probability of Error ( Minimize)

3. Bayes Average Cost (Maximize)

4. Probability of Detection ( Maximize with fixed Probability of False alarm)

(Neyman Pearson Rule)

5. Losses (Minimize the maximum)

4

If l( x ) N

Likelihood ratio

<>C1

C2 Threshold

Review 3: MAP, MPE , and Bayes Classification Rule

(C22 - C12 ) P(C2)

(C11 - C21 ) P(C1)NBAYES =

P(C2)

P(C1)NMAP =

P(C2)

P(C1)NMPE =

5

Topics for Lecture 8

1. Two Dimensional problem

2. Solution in likelihood space

3. Solution in pattern space

4. Solution in feature space

5. Calculation of probability of error

6. Transformational Theorem

6

Example : 2 Class and 2 observations

C1 : x = [ x1, x2 ]T ~ p(x1, x2 | C1) , P(C1)C2 : x = [ x1, x2 ]T ~ p(x1, x2 | C2) , P(C2)

Given:

C1 : x ~ N( M1 , K1 ) C2 : x ~ N( M2 , K2 )

0 0

1 0 0 1

2 0 0 2

1 1M1 = M2 = K1 = K2 =

Find Optimum decision rule (MPE)

P(C1) = P(C2) = 1/2

7

8

9

taking the ln of both sides gives an equivalent rule

Solution in different spaces

If - (x1 + x2 - 1) 0<>C2

C1

In Observation Space

If x1 + x2 1<>C1

C2

In feature space y=g(x1,x2)

rearranging gives

If y 1 <>C1

C2g(x1,x2) = x1+x2

10

In Observation Space

1

1

x1 + x2 = 1

x2

x1

decide C2

decide C1

10

decide C2decide C1 where y = x1 + x2y

In Feature Space (Sufficient statistic for this problem)

11

Calculation of P(error | C1) for 2 dimensional Example in y space

P(error | C1) = P(decide C2 |C1)

= p( y | C1 ) dyR2

P(error | C1) = exp(-y2/4)dy

1

oo

Under C1 : x1 and x2 are independent normally distributed gaussian random variables N(0,1) thus y is normally distributed as N(0,2).

12 pi

12

Calculation of P(error | C2) for 2 dimensional Example in y space

P(error | C2) = P(decide C1 |C2)

= p( y | C2 ) dyR1

P(error | C2) = exp{(-(y-2)2/4)} dy1

oo

Under C2: x1 and x2 are independent normally distributed gaussian random variables N(1,1) thus y is normally distributed as N(2,2).

12 pi_

13

P(error) = P(error | C1) P(C1) + P(error |C2) P(C2)

Probability of error for example

= exp(-y2/4)dy P(C1)

1

oo12 pi

+ exp{(-(y-2)2/4)} dy P(C2) 1

oo12 pi_

14

Transformational Theorem

Given : X is a random Variable with known probability density function pX(x).

y=g(x) is a real vlued function with no flat spots

Define the random variable Y=g(X).

Then The probability density function for Y, pY(y) is as follows:

d g(x)dx x=xi

pY(y) = Where xi are all real roots of y=g(x)

pX(x)

all xi

15

Example: Transformational Theorem

Given: X ~ N(0,1)

Define function: y = x2

Define the random variable: Y = X2

Find the probability density function pY(y)

16

Solution: y

x2x1 x

y = x2

y > 0

x2 = yx1 = - y

for y > 0 there are two real roots of y = x2 given by

for y > 0 there are no real roots of y = x2

therefore pY(y) = 0 for those values of y

y < 0

17

pY(y) = pX(x1) + pX(x2) = pX( - y ) + pX( y )

d g(x)dx x=xi

pY(y) = pX(x)

all xi

Apply Fundamental Theorem

= 0 if no real roots

if real roots

d g(x) = 2xdx

= exp(- (- y )2/2)1

2 pi exp(- ( y )2 /2)12 pi

+

2 (- y ) 2( y )

for y > 0

18

exp(- y/2)

2 piu(y)=pY(y)

Final Answer

19

Summary for Lecture 8

1. Two Dimensional problem

2. Solution in likelihood space

3. Solution in pattern space

4. Solution in feature space

5. Calculation of probability of error

6. Transformation Theorem

20

End of Lecture 8