1 Nonisocyanate Polyurethanes Systems and Cyclic Carbonates Oleg L. Figovsky, D.Sc., Professor,...

Post on 18-Jan-2016

225 views 1 download

Tags:

Transcript of 1 Nonisocyanate Polyurethanes Systems and Cyclic Carbonates Oleg L. Figovsky, D.Sc., Professor,...

1

Nonisocyanate Polyurethanes Systemsand Cyclic Carbonates

Oleg L. Figovsky,

D.Sc., Professor,  Academician of European Academy of Sciences, Director R&D of Nanotech Industries, Inc. and

INRC Polymate, Editor-in-chief of journals – ICMS (USA), SITA (Israel),

Chairman of the UNESCO Chair "Green Chemistry"

Polyurethanes

Polyurethanes (PUs) is a product of the addition polymerization reaction between diisocyanates and diols. The demand in PUs has continued to increase and it will attain in 2016 a production of 18 million tons (~US$66.4 bln) of which 75% are foam.

The main environmental issue of PU materials concerns the use of isocyanate raw materials. In fact, these compounds are harmful for human and environment. MDI and TDI, the most widely used isocyanates in PU industry, are classified as CMR (Carcinogen, Mutagen and Reprotoxic):

Merenyi S. REACH: regulation (EC) No 1907/2006: consolidated version (June 2012) with an introduction and future prospects regarding the area of Chemicals legislation. GRIN Verlag; 2012.

2

3

Among all methods of non-isocyanate synthesis of polyurethane, reaction of cyclic carbonate with amine is the most attractive.

NIPU – Non-Isocyanate PolyUrethane

HNIPU –Hybrid Non-Isocyanate PolyUrethane

4

Historical inventions in the field of NIPU – HNIPU

Fundamentals for the practical application of NIPU on the basis of five-membered cyclic carbonates (1,3-dioxolan-2-ones) in coatings, sealants, adhesives, etc. were largely developed by L. Rappoport, O. Figovsky, V. Mikheev, V. Stroganov et al. in the 1970 – 1990’s

Soviet Union patents:SU 351835, 1972 – Cyclic carbonate synthesis SU 529197, 1976 – Coating, sealantSU 359255, 1972 – Polyhydroxyurethanes SU 563396, 1977 – Polymer concreteSU 413824, 1983 – NIPU hardeners SU 628125, 1978 – Polymer concreteSU 422262, 1978 – Polycyclic carbonate polydiens SU 630275, 1978 – Coating, sealantSU 426493, 1978 – Polycyclic carbonate polydiens SU 659588, 1979 – SealantSU 441805, 1978 – acrylic cyclic carbonate SU 518506, 1976 – UrethanediolsSU 462478, 1975 – Dienehydroxyurethanes SU 812797, 1981 – CoatingSU 671318, 1984 – Cyclic carbonate synthesis SU 903340, 1982 – Polymer concreteSU 707258, 1984 – Cyclic carbonate synthesis SU 908769, 1982 – Polymer concreteRU 970856, 1996 – Polydienehydroxyurethanes RU 1770324, 1992 – NIPU foamSU 1110783, 1984 – Cyclic carbonate synthesis SU 1754747, 1992 – CoatingSU 1126569, 1984 – Cyclic carbonate synthesis SU 1754748, 1992 – Coating

5

Non-amine curing of hybrid oligomer compositionsSU Patent 722206, Figovsky O.L. et al.

Hybrid anticorrosion composition on the base of epoxy resin includes hydroxyphenyl ester of phosphoric acid (OEPA).

OEPA is the reaction product of alkyl resorcinol fractions shale phenols with orthophosphoric acid.

Hybrid composition cure at ambient temperatures(+5 - +35o C)

6

Reaction of cyclocarbonates with amines has long been used in the pharmaceutical:

Preparation of hydroxyaromatic esters of substituted carbamic acidsSU Patent 722082, Figovsky O.L. et al.

by reaction of aromatic amines with arylen cyclic carbonatesat temperatures 20-100o C

R1-Ar[NHCOO-Ph(o-OH)(R)]m

m = 1, 2, 3R = H; -CH=CH-CH3; -OH; -C(CH3)3

R1 = -OH; -Cl; -COOC(CH3)-CH2-OOC-Ph-o-NH2

Ar = -Ph; naphtyl

7

Synthesis of cyclic carbonates

A plausible mechanism for catalyzed synthesis of cyclic carbonates from epoxides and CO2

J Polymer Sci. Part A: Polymer Chemistry, 2013, V. 51, Issue 5, p. 1230-1242

8

Known role of Bu4NBr (TBAB) in cyclic carbonate synthesis

Angew. Chem. Int. Ed. 2009, 48, 2946-2948

Bimetallic aluminum(salen) complex 1: [(salen)Al]2O

9

Synthesis of cyclic carbonates from epoxides and CO2 at 1 atm and at ambient temperature:complex 1 is used in conjunction with TBAB

Eur. J. Inorg. Chem. 2007, 3323-3326Angew. Chem. Int. Ed. 2009, 48, 2946-2948

rate = k [epoxide] [CO2] [1] [Bu4NBr]2

10

Conversion of CO2 and epoxides into cyclic carbonates

Multilayered covalently supported ionic liquid phase (mlc-SILP) materials synthesised by grafting

different bis-vinylimidazolium salts on thiol-functionalised silica.

Catal. Sci. Technol., 2014, 4, 6, 1598-1607

11

RSC Adv., 2013, 3, 38, 17307-17313

One-pot coupling reaction of CO2, propylene oxide (PO) and bisepoxides without the addition of external organic solvents by using

a nanolamellar zinc-cobalt double metal cyanide complex (Zn–Co(III) DMCC) as the catalyst and

cetyltrimethyl-ammonium bromide (CTAB) as the co-catalyst.

12Catal. Sci. Technol., 2014, 4, 6, 1513-1528

Progress made in the use of ionic liquid catalysts and related systems for cycloaddition reactions of carbon dioxide with epoxides

Catalysts range: from simple onium species including tetrabutylammonium bromide, functionalized and simple imidazolium ionic liquids, to a plethora of supported ionic liquid systems. A range of supports: alumina, silica, carbon nanotubes, magnetic nanoparticles, poly(ethyleneglycol), polystyrene, cellulose and chitosan have been used with a variety of ionic groups.

13

Alternative routes for the synthesis of cyclic carbonates(Green Chem., 2010, 12, 1514–1539)

1. Cyclic carbonate synthesis via oxidative addition of CO2 to olefins

2. Carboxylative cyclization of propargyl alcohol with CO2

14

4. Electrochemical synthesis of cyclic carbonates

3. Cyclic carbonate synthesis from CO2 and 1,2-diols

15

Versatile dehydration systems have been developed, which have drastically improved the yields of the target carbonates

Catal. Sci. Technol., 2014, 4, 9, 2830-2845

16

Direct synthesis of propylene carbonate from CO2 and 1,2-propanediol in excellent yield (>99%)

using a carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine

ACS Catal., 2014, 4 (6), pp 1893–1896

17

Raw materials: epoxidized fatty oilsRef. Catalyst T, oC Pg, atm t, hours Conversion, %

1 Tetrabutyl ammonium bromide (TBAB), 5 mol. % 110 1 70 942 TBAB 100 105 20-40 1003 KI coupled with 18-crown-6 130 60 120 984 SnCl4

. 5H2O and TBAB, 3 mol. % 120 10 20 65-905 TBAB 110-140 0-57 20-150 63-1006 TBAB (M = 322.4), 1-5 wt. % 80

1201

542418

5063

7 TBAB 3.5% (or 3 mol.% halide per epoxy) and silica-supported 4-pyrrolidino-pyridinium iodide, SiO2–(I)

140 0; 10; 30

8 40, 70 and 100

1-200

Renewable Raw MaterialsRegimes of carbonization

1. J. Appl. Polym. Sci., 2004, 92 (2), 883-891; US Pat. 7045577, 2006.2. Green Chem., 2005, 7 (12), 849-854; J. Agric. Food Chem., 2005, 53 (24), 9608-9614.3. J. App. Polym. Sci., 2006, 102 (3), 2904-2914.4. Catal Lett., 2008, 123 (3-4), 246-251; 5. J. Appl. Polym. Sci., 2008, 108 (6), 3867-3875.6. J. Oleo Sci., 2007, 56 (12), 629-632.7. Green Chem., 2012, 14, 2, 483-489.8. Polym. Chem., 2012, 3, 2, 525-532.

Examples of cyclic carbonatesMonocyclic carbonates

18

Propylene carbonate

Propyl Carbonate TriethoxysilaneGlycerine carbonate

Glycerol carbonate methacrylateAllyl Glycerol carbonate

Phenoxycarbonyloxymethylethylene carbonate

19

Examples of cyclic carbonatesDicyclic carbonates

Resorcinol Bis Carbonate

Alkyl Bis Carbonate

Polydimethyl Siloxane Bis Carbonate Bis Carbonate Terephtalate

Cebacate Bis CarbonatePPO Bis Carbonate

20

Examples of cyclic carbonatesTricyclic and polycyclic carbonates

Propoxylated glycerine tricyclic carbonateTrimethylolpropane tricyclic carbonate

Aminophenol tricyclic carbonate

Diaminodiphenylmethane tetracyclic carbonate

21

Examples of cyclic carbonatesPolyaromatic polycyclic carbonates

22

Examples of cyclic carbonatesRenewable plant-base raw materials

Carbonated epoxidized unsaturated fatty acid triglyceride

Poly Isosorbide Bis CarbonateVanillin Bis Carbonate

Limonene dicarbonate

23

Proprietary Chemistry of Nonisocyanate PU★ NIPU networks are obtained through a reaction between polycyclic carbonate oligomers and aliphatic or cycloaliphatic polyamines with primary amino groups. This forms a crosslinked polymer with β-hydroxyurethane groups of different structure resulting in a polyhydroxy-urethane polymer.★ Since NIPU is obtained without using highly toxic isocyanates, the process of synthesis is relatively safe for both humans and environment in comparison to the production of the conventional polyurethanes.

24

β-Hydroxyurethane moieties of nonisocyanate polyurethanes:

(a) with secondary hydroxyl groups;

(b) with primary hydroxyl groups.

25

Stages of the hydroxyurethane formation process

Dok. Phys. Chem., 2003, Vol. 393, Nos. 1–3, pp. 289–292.

26

Activation of the cyclic carbonate group in proton-donor medium

Kinetic equation containing an uncatalysed and an autocatalysed reaction

-d[c]/dt = kl[C][a]p + k2[c][a]q[OH ]

[c] = concentration of cyclic carbonate[a] = concentration of amine[OH] = concentration of the product + initial concentration of OHp ~ q ~ 2k2 >> kl

Polymer Bulletin, 1991, 27, 171-177.

27

Structures of the hydroxyurethane conformers and isomers

Russian Chem. Bull., Int. Edition, 2012, Vol. 61, No. 3, pp. 518-527.

28

Alternative synthesis of NIPU(The Dow Chemical Company )

Recently a new isocyanate-free chemistry for the preparation of polyurethane materials at ambient temperatures from the reaction of polyaldehydes with carbamate functional polymers using an acid catalyst was proposed by Dow Chemical:

US Patent 8,653,174, February 18, 2014;SSPC 2015. Isocyanate Free Polyurthane Coatings for Industrial Metal Applications

29

Alternative synthesis of NIPU(The Dow Chemical Company )

Preferably the polyaldehyde is prepared by hydroformylating process with hydrogen gas, carbon monoxide, and an olefin-containing starting compound.

The polycarbamates are acrylic carbamate functional polymers with a molecular weight of ~15,000 in n-butyl acetate at ~70% solids by weight.

Isocyanates and phosgene are used on the preliminary stages for preparation of the carbamate functional polymers.

Blocking agents (alcohols) are used for regulation of pot life. As a result an additional allocation of water takes place.

US Patent 8,653,174, February 18, 2014;SSPC 2015. Isocyanate Free Polyurthane Coatings for Industrial Metal Applications

30

NIPU is not sensitive to moisture in the surrounding environment.

Hydroxyl groups formed at the β-carbon atom of the urethane moiety increase adhesion properties.

Plurality of intra- and intermolecular hydrogen bonds as well as an absence of unstable biuret and allophanate units seem to be responsible for increased thermal stability and chemical resistance to nonpolar solvents.

31

Advantages of HNIPU

HNIPU has superior properties in comparison to conventional polyurethanes (PU)

High hydrolytic stability Reduced permeability

3-4 time less than conventional PU Superior abrasive and chemical resistance

30-50% better than conventional PU Excellent adhesiveness Safer and easer application

Do not use the toxic isocyanate Wide spectrum of applications

32

Some recently achievements

in chemistry and technology of NIPU

(literature and patent data)

33

Five-membered cyclic carbonate polysiloxane compounds and amine-modified polysiloxane compounds (Japan)

wherein A means

in which R1 means an alkylene group which has from 1 to 12 carbon atoms and may be linked via an element of O, S or N and/or -(C2H4O)b-, R2 means a direct bond or an alkylene group having from 2 to 20 carbon atoms, R2 may be linked to an alicyclic group or aromatic group, b stands for a number of from 1 to 300, and a stands for a number of from 1 to 300.

34US Patents: 8,975,420, 2015; 8,951,933, 2015; US Patent 8,703,648, 2014.

The resulting polysiloxane-modified polyhydroxy polyurethane resins are very useful as a raw material for various molding materials, synthetic leather and artificial leather materials, fiber coating materials, surface treatment materials, thermal recording media, strippable materials, paints, and a binder for printing inks; and, when added in epoxy resins, as a raw material for various paints, adhesives, composite materials and sealants.

35

A novel cyclic carbonate monomer comprising a reaction product of (a) at least one divinylarene dioxide; and (b) carbon dioxide:

US Patent Application 20140191156, DOW GLOBAL TECHNOLOGIES LLC

The poly(hydroxyurethane) compositions made from Divinylbenzene Dicarbonate and polyamines forms a reactive intermediate that can be used for making, for example, a poly(hydroxyurethane) foam product having an approximate volume expansion of 10.

36European Polymer Journal, 2015, 66, 129–138

NIPU foams (France – Poland)

The obtained foamed mixtures were heated at 80 C for 12 h and 120 C for 4 h.Apparent density of foam varies in the range 194-295 kg/m3.

Tension strain is 0.005-0.009 % at 35 % elongation.

37

Synthesis of Terminal Bicarbonate Precursors from Plant Base Raw Materials

38US Patent Application 20120259087

39

A method for preparing a compound comprising a β-hydroxy urethane unit or a γ-hydroxy-urethane unit,

comprising reacting a compound A comprising a cyclocarbonate reactive unit

with a compound B comprising an amino reactive unit (-NH2) in the presence of a catalyst, said method being characterized in that said catalyst comprises

an organometallic complex

and a cocatalyst selected from the group of Lewis bases, or salts of tetra-alkyl ammonium.

US Patent Application 20140378648

40

Curing of epoxy resin compositions comprising cyclic carbonates

using mixtures of amino hardeners and catalysts

US Patent 8,586,653, 2013, US Patent 8,877,837, 2014. BASF

41

US Patent 8,853,322, 2014

Water-dispersible, cyclocarbonate-functionalized vinyl copolymer binder,

a process for the preparation of the binder, an aqueous dispersion containing the binder, a system comprising the binder, water and an (amine) curing agent

and the use of the binder for the production of a hardened coating are proposed. It was surprisingly found that this binder, in which the emulsifier groups

are incorporated in the polymer chain, gives stable aqueous dispersions having a solids content of up to a 30% by weight.

42US Patent 8,017,719, 2011. Rhodia.

Method for preparing polyhydroxy-urethanesfrom amino compounds and compounds carrying carbonate functions,

in particular cyclic carbonate functions.

43

Plasticizer Mixture of Epoxidized Fatty Acid Glycerin Carbonate Ester and Epoxidized Fatty Acid Esters

wherein R1 is an epoxidized C7-23 hydrocarbon chain, represented by

wherein 1 ≤n ≤5 and 8 ≤ (m+3n+p+1) ≤ 23.

US Patent Application 20150057397

44US Patent Application 20150051365

2-oxo-1,3-dioxolane-4-carboxamides (I)

(I) (II)

in which R2 can be, inter alia, an n-valent radical (n>1) which is substituted with n-1 further 2-oxo-1,3-dioxolane-4-carboxamide groups of general formula (II),

to processes for the preparation of these 2-oxo-1,3-dioxolane-4-carboxamides, to processes for the preparation of the 2-oxo-1,3-dioxolane-4-carboxylic acids of formula (III),

which are suitable starting materials for the above processes, and to the use of said 2-oxo-1,3-dioxolane-4-carboxamides for the preparation of (poly)hydroxyurethanes.

45

HYBRID POLYURETHANE SPRAY FOAMS MADE WITH URETHANE PREPOLYMERS AND RHEOLOGY MODIFIERS

US Patent Application 20120183694

It was disclosed hybrid spray foams that use a urethane reactant, a crosslinker, and an (optional) epoxy and/or acrylic resin, along with a blowing agent and rheology modifier to produce a quick-setting foam that remains in place until the foam forms and cures.

In some other formulations it was used the NIPU adducts of cyclic carbonates and di- or polyamines, received from Polymate.

Unfortunately, the use of rheology modifiers in practice increases the viscosity of the compositions and imparts to them a thixotropic property, which significantly limits the use of this method for spray foams.

Elaborations of novel NIPU – HNIPU products and technologies

HCTI – Polymate

Cyclocarbonated Acrylic Oligomer

It was developed NIPU paint on the base of cyclocarbonated acrylic oligomer cured by polyamines at 110-120 °C / 2-3 hours. Paint has high water and weather stabilities but unfortunately we need to use solvents for this composition.

46

Synthesis of polyaminofunctional hydroxyurethane oligomers and hybrid polymers formed therefrom (EP 1070733, 2001)

Chemically resistant materials with high mechanical properties are provided by using adducts of primary diamines (with oligocyclocarbonate and epoxy compounds) and epoxy oligomers with ended epoxy groups (or mixture of epoxy oligomers and oligomercaptanes).

47

+ H2N-R2-NH2 →

Cyclocarbonate groups containing hydroxyamine oligomers from epoxycylclic carbonates (US 6,407,198, 2002)

Chemically resistant materials with high mechanical properties are provided by using polycyclic carbonates of special structure. The polycyclic carbonates are prepared by the reaction of oligocyclic carbonates containing ended epoxy groups with primary aromatic diamine.

48

Hydroxyurethane-amine adducts as hardeners for epoxy resins at RT

49

Scheme of hydroxyurethane modified amine adduct for curing of epoxy resins

(US Patent Application 2010/0144966)

"HUMs" & "Uramines"

• > "Hydroxy Urethane Modifiers" (HUMs) are the patented backbone technology of HNIPU and are formulated as part of curing agents under the name "Uramine" (Urethane Amines)

• > Developed for epoxides to enhance their properties to the level of a polyurethane or better

50

Hydroxyalkyl urethane modifier (HUM)

HUM is obtained as a result of a reaction between a primary amine and a cyclic carbonate compound at stoichiometric ratio, and can be represented by the formula:

wherein R1 is a residue of the primary amine, R2 and R3 are the same or different and are selected from the group consisting of H, alkyl, hydroxyalkyl, and n satisfies the following condition: n ≥ 2 (US Patent 7,989,553, 2011).

51

Nano-structured non-isocyanate hybrid epoxyurethane polymer

A novel non-isocyanate hybrid epoxyurethane composition contains alkoxysilane units. The composition is highly curable at low temperatures with forming of nanostructure under the influence of atmospheric moisture and the forming of active, specific hydroxyl groups. The cured composition has excellent strength-stress properties, adhesion to a variety of substrates, appearance, and resistance to weathering, abrasion, and solvents (US Patent 7,820,779 2010).

52

Radiation-curable biobased compositionA radiation-curable composition comprising (meth)acrylic monomers and/or oligomers, photoinitiators, and a nonreactive composite additive, wherein the nonreactive composite additive comprises a) a biobased hydroxyurethane additive of formula (1):

R1[−NH−COO−CR2H−CR3H(OH)]2 (1)wherein R1 is a residue of the biobased primary diamine, and R2 and R3 are the same or different and are selected from the group consisting of H, alkyl, and hydroxyalkyl; and b) a silane-based hydroxyurethane additive of formula (2):

(R6)3-n(OR5)nSi−R4−NH−COO−CR2H−CR3H(OH) (2)wherein R2 and R3 are the same as stated above, R4 is generally an aliphatic group having from 1 to 6 carbon atoms, R5 and R6, independently, are hydrocarbon radicals containing from 1 to 20 carbon atoms and selected from the group consisting of aliphatic, cycloaliphatic, and aromatic groups or combinations thereof, and n is equal to 1, 2, or 3 (US Application 14/160,297, 2014).

53

Hybrid nonisocyanate polyurethane grafted polymers

Recently Polymate Ltd. develops a new hybrid epoxy-amine hydroxyurethane network polymers with lengthy epoxy-amine chains and pendulous hydroxyurethane units (US Application 14/296,478, 2014). The cured linear hybrid epoxy-amine hydroxyurethane-grafted polymers by novel structure have a controlled number of cross-links and combine increased flexibility with well balanced physical-mechanical and physical-chemical properties of conventional epoxy-amine systems. In particular, new materials have tensile strength up to 12 MPa and elongation at break 70-275%. They may be used for various applications, for example, for manufacturing of synthetic/ artificial leather, soft monolithic floorings and flexible foam.

54

Topological structure of polymer chains

where E―R`―E is a residue of a diglycidyl ether, which reacted with amine hydrogens,E is a converted epoxy group, i.e., –CH2–CH(OH)–CH2–O–,N is a nitrogen atom,A is a residue of a di-primary amine,U(OH) is a hydroxyurethane group, i.e., –R1–NH–CO–O–CH(R2)–CH(OH)–R3, and=N―A―U(OH) is a residue of aminohydroxyurethane with the number of free amine hydrogen atoms equal 2.

55

The schematic structural formula of the novel polymer is the following:

Creating a controlled number of cross-links

A schematic structural formula of the novel polymer with the directions of the possible cross-links (shown by arrows) is the following:

,

where is a residue of the polyfunctional epoxy resin, other

designations being the same as above. Polyamines with a number of free amine hydrogen atoms more than 2 also may be used for cross-linking.

56

Some of perspective raw amines

57

PPGs amine terminated di- and tri-amines with MW up to 5000

Bio-based polyamines – idealized chemical structures

HNIPU PAINT APPLICATION:Indoor/Outdoor for Industrial & Commercial Buildings; Chemical Plants; Marine Apps; Protective

Coatings Inside Pipes; Equipment for Liquid Fertilizer Delivery; Military Equip., etc.

HNIPU FLOORING APPLICATION:Indoor/Outdoor for Industrial & Commercial Buildings; Garages; Chemical Plants; Warehouses; Monolithic

Flooring for Civil, Industrial and Military Engineering, Marine Apps, etc.

PRODUCT NAME SPECIFIC PROPERTY

FLI4WIncreased chemical, wearing, light and humidity resistance plus high sanitary-hygeinic properties. Application temperature: 50-

68 ˚F (10-20 ˚C)

FLI4W-FC Same as FLI4W but shorter curing time and pot life (10-30 minutes)

FLI4W-LP Same as FLI4W but longer pot life (2-3 hours)FLI4W-B Same as FLI4W but longer pot life (up to 4 hours)

FLIO6WHigher light resistance. Application temperature:

50-68 ˚F (10-20 ˚C)FLIO6S Same as FLIO6W but increased "ultra" UV resistance

FLI3Low application temperature:

36-77 ˚F (2-25 ˚C), fast curing, high sanitary-hygienic properties

PRODUCT NAME SPECIFIC PROPERTY

PI9WPaint for indoor light stable and chemical resistant applications.

Application temperature: 50-68 ˚F (10-20 ˚C)

PIO15WIncreased light resistance and high decorative properties.

Application temperature: 50-68 ˚F (10-20 ˚C)

PIO15S Same as PIO15W but increased "ultra" UV resistance

Comparative properties of coatings “cold curing”

Charackteristics HNIPU Conventional epoxy Conventional PU

Tensile strength, MPa 50-70 50-70 10-30

Abrasion resistance (TABER, wheel CS-17, 1000g), loss of mass, mg/1000 cycles

25-30 80-120 40-80

Weatherability (QUV-A testing, 1000 h)*: color change, ΔE   gloss change, %

2 51 4-1.4 -99 -5

59

*Data of Sherwin-Williams

60

HNIPU foam

HNIPU foam is elaborated on the base of wide spectrum of hydroxyurethanes. Composition of polymeric matrix include up to 40 % renewable components.

We have elaborated:- sealant one-component foam;- 2K sprayable foam insulation – rigid and semirigid;- pourable rigid and semirigid foam;- preliminary results on some types of soft and flexible

foam

61

Non-isocyanate foam compositions related to hybrid systems on the basis of epoxy, hydroxyurethane, acrylic, cyclic carbonate,

and amine raw materials in different combinations

US Patent 6,960,619 B2, 2005.

Foamable, photopolymerizable liquid acrylicbased compositions for sealing applications

62

Hybrid non-isocyanate foams and coatingson the basis of epoxies, acrylic epoxies, acrylic cyclocarbonates,

acrylic hydroxyurethane oligomers, and bifunctional amines

US Patent 7,232,877 B2, 2007.

63

Hybrid polyhydroxyurethane network on a base of vegetable oil

Hybrid epoxy-hydroxyurethane compositions cross-linked at ambient temperatures were obtained on the base of renewable raw materials. Networks of hybrid polyhydroxyurethane were formed from carbonated-epoxidized soybean oil, without the use of isocyanate intermediates. Compositions can apply to the preparation of curable polymeric foam and other materials (coatings, sealants, adhesives).

US Patent Application 2012/0208967.

Adaptation of hybrid nonisocyanate composition for sprayable foam application

Provided is a method for the spray application of a nonisocyanate polymer foam composition. The method comprises the steps of supplying dosed quantities of the components of the nonisocyanate polymer composition to the mixing chamber, transferring the foamable nonisocyanate polymer composition to the intermediate chamber and continuously moving the composition through the intermediate chamber for providing conditions most optimal for the spray application onto the substrate.

64US Patent Application 2015/0024138.

65

Principles of creating compositions for polymer matrices

Varying oligomer raw materials (epoxy, hydroxyurethane, acrylic, cyclic carbonate, and amine) in different combinations.

Using the hydroxyurethane components as comprising the main chain, and as external dopants.

Using the renewable plant-based raw materials.

Blowing agents:No impact on ozone layer depletion,

low Global Warming Impact (direct and indirect)

66

Blowing agents

Code and Name Commercial NameBoiling point,Tb, oC

Hydrofluorocarbons (HFCs)HFC-227ea 1,1,1,2,3,3,3-Heptafluoropropane FM-200, DuPont Fluoroproducts –16.5

HFC-236fa 1,1,1,3,3,3-hexafluoropropane SUVA® 236fa, DuPont Fluoroproducts –1.4

HFC-245fa 1,1,1,3,3-pentafluoropropane Enovate® 3000, Honeywell 15.3

HFC-365mfc 1,1,1,3,3-Pentafluorobutane

Forane® 365mfc, Arkema Inc.;Solkane® 365mfc, Solvay Fluorides, Inc. 40.2

HFC-43-10mee 1,1,1,2,2,3,4,5,5,5-Decafluoropentane Vertrel® XF, DuPont Fluoroproducts 55

HFC-1336mzz1,1,1,4,4,4-hexafluoro-2-butene Formacel® 1100, DuPont Fluoroproducts 33

Unsaturated hydrochlorofluorocarbon (HCFC)HCFC-1233zd(E)trans-3,3,3-trifluoro-1-chloropropene Solstice® LBA, Honeywell 19

Hydrocarbonsn-Pentane 36iso-Pentane 28Cyclopentane 49

Chemical blowing agentPolymethylhydrogensiloxane Dow Corning 1107® Fluid, Dow Corning Corp. -

67

Preliminary testing of HNIPU sprayable foam

in Graco

68

69

70

71

Rigid Foam Insulation Standard Properties

2800 – 32003600-4100

≤3700

ASTM D2196 Viscosity (Brookfield RVDV II, Spindle 29, 20 rpm) at 25ºC, cPBase “A”Base “B”“A” + “B” (3-5 sec after mixing)

8-10 Pot life at: 25ºC (77 ºF), sCompliant ASTM D2369 VOC

2-430-4015-20

Gel time, s Touch dry, sCuring for transportation, min

White Appearance of rigid foam

0.02 – 0.04 ASTM D1621Compressive Properties of Rigid Cellular Plastics, 24 hours, kg/mm2

30-40 ASTM D1622Apparent Density of Rigid Cellular Plastics, kg/m3

4.5-5.0 C 518 Thermal Resistance (R-value), hr•ft2•oF/BTU•in

RIGID HNIPU FOAM

72

Properties of preliminary flexible foam samples

Example No.Properties

PP-1-90 PP-1-88 PP-1-82 PP-1-77

Good foaming, not shrinkage flexible foam Brief description

70 80 80 40 Temperature of curing, oC

15 20 10 30 Cream time, sec

15 30 5 20 Touch dry, min

38 38 40 45 Density, kg/m3

0.12 0.03 0.026 0.028 Tensile Strength, MPa

70 70 60 60 Elongation at break, %

20-40 % Sustainable raw materials