1 MICROBIAL TAXONOMY Phenotypic Analysis Genotypic Analysis.

Post on 15-Jan-2016

241 views 1 download

Tags:

Transcript of 1 MICROBIAL TAXONOMY Phenotypic Analysis Genotypic Analysis.

1

MICROBIAL TAXONOMY

• Phenotypic Analysis

• Genotypic Analysis

2

Classification and Taxonomy

• Taxonomy– science of biological classification– consists of three separate but interrelated

parts• classification – arrangement of organisms into

groups (taxa; s.,taxon)

• nomenclature – assignment of names to taxa

• identification – determination of taxon to which an isolate belongs

3

Natural Classification

• Arranges organisms into groups whose members share many characteristics

• first such classification in 18th century developed by Linnaeus

– based on anatomical characteristics

• This approach to classification does not necessarily provide information on evolutionary relatedness

4

Polyphasic Taxonomy

• Incorporates information from genetic, phenotypic and phylogenetic analysis

5

Phenetic Classification

• Groups organisms together based on mutual similarity of phenotypes

• Can reveal evolutionary relationships, but not dependent on phylogenetic analysis

• Best systems compare as many attributes as possible

6

Phylogenetic Classification

• Also called phyletic classification systems• Phylogeny

– evolutionary development of a species

• Woese and Fox proposed using rRNA nucleotide sequences to assess evolutionary relatedness of organisms

7

Figure 19.7

genus – well defined group of one ormore species that is clearly separatefrom other genera

Taxonomic Ranks and Names

8

Taxonomic Ranks and Names

Table 19.3

9

Defining Species

• Can’t use definition based on interbreeding because procaryotes are asexual

• Definition of Species

– collection of strains that share many stable properties and differ significantly from other groups of strains

• Also suggested as a definition of species– collection of organisms that share the same

sequences in their core housekeeping genes

10

Strains

• Vary from each other in many ways– biovars – differ biochemically and

physiologically

– morphovars – differ morphologically

– serovars – differ in antigenic properties

11

Genus

• Well-defined group of one or more strains

• Clearly separate from other genera

• Often disagreement among taxonomists about the assignment of a specific species to a genus

12

Techniques for Determining Microbial Taxonomy and Phylogeny

• Classical Characteristics– morphological

– physiological and metabolic

– biochemical

– ecological

– genetic

13

Table 14-3

14

Table 19.4

15

Table 19.5

16

Table 14-4

17

Molecular Characteristics

• Nucleic acid base composition

• Nucleic acid hybridization

• Nucleic acid sequencing

18

Nucleic acid base composition

• G + C content– Mol% G + C =

(G + C/G + C + A + T)100

– usually determined from melting temperature (Tm)

– variation within a genus usually < 10%

19

Figure 19.8

as temperature slowlyincreases, hydrogen bondsbreak, and strandsbegin to separate

DNA issinglestranded

20

Table 19.6

21

Nucleic acid hybridization

• Measure of sequence homology

• Genomes of two organisms are hybridized to examine proportion of similarities in their gene sequences

22

Fig. 14-20

Hybridizationexperiment:

Same genus,but differentspecies

Organisms tobe compared:

Genomic DNA

Heat todenature

Mix DNA from two organisms—unlabeledDNA is added in excess:

DNApreparation

Genomic DNA

Results andinterpretation:

Same species

Differentgenera 100% < 25%

100 75 50 25 0 Same strain(control)

1 and 2 are likelydifferent generaPercent hybridization

Unhybridized Organism 2 DNAHybridized DNA

Shear and label ( )

Hybridized DNA

Shear DNA

Organism 1 Organism 2

23

Genotypic Analysis

• DNA-DNA hybridization

– Provides rough index of similarity between two organisms

– Useful complement to SSU rRNA gene sequencing

– Useful for differentiating very similar organisms

– Hybridization values 70% or higher suggest strains belong to the same species

– Values of at least 25% suggest same genus

24

Table 19.7

25

Nucleic acid sequencing

• Most powerful and direct method for comparing genomes

• Sequences of 16S and 18S rRNA (SSU rRNAs) are used most often in phylogenetic studies

• Complete chromosomes can now be sequenced and compared

26

Comparative Analysis of 16S rRNA sequences

• Oligonucleotide signature sequences found– short conserved sequences specific for a

phylogenetically defined group of organisms

• Either complete or, more often, specific rRNA fragments can be compared

• When comparing rRNA sequences between 2 organisms, their relatedness is represented by an association coefficient of Sab value– the higher the Sab value, the more closely related the

organisms

27

Small Ribosomal Subunit rRNA

Figure 19.10

frequently used to create trees showingbroad relationships

28

Figure 14.11

Ribosomal RNAs as Evolutionary Chronometers

29

30

oligonucleotidesignaturesequences – specificsequences thatoccur in mostor all membersof a phylo-genetic group

useful forplacingorganisms intokingdom ordomain

Table 19.8

31

32

Genomic Fingerprinting

• Used for microbial classification and determination of phylogenetic relationships

• Used because of multicopies of highly conserved and repetitive DNA sequences present in most gram-negative and some gram-positive bacteria

• Uses restriction enzymes to recognize specific nucleotide sequences– cleavage patterns are compared

33

DNA Fingerprinting

• Repetitive sequences amplified by the polymerase chain reaction– amplified fragments run on agarose gel, with

each lane of gel corresponding to one microbial isolate

• pattern of bands analyzed by computer

• widespread application

34

Figure 19.11

35

Amino Acid Sequencing

• The amino acid sequence of a protein is a reflection of the mRNA sequence and therefore of the gene which encodes that protein

• Amino acid sequencing of cytochromes, histones and heat-shock proteins has provided relevant taxonomic and phylogenetic information

• Cannot be used for all proteins because sequences of proteins with different functions often change at different rates

36

Comparison of Proteins

• Compare amino acid sequences

• Compare electrophoretic mobility

• Immunologic techniques can be also used

37

Relative Taxonomic Resolution of Various Molecular Techniques

Figure 19.12

38

Microbial Phylogeny

39

The Evolutionary Process

Evolution: is descent with modification, a change in the genomic DNA sequence of an organism and the inheritance that change by the next generation

Darwin's Theory of Evolution: all life is related and has descended from a common ancestor that lived in the past.

40

Assessing Microbial Phylogeny

• Identify molecular chronometers or other characteristics to use in comparisons of organisms

• Illustrate evolutionary relationships in phylogenetic tree

41

Molecular Chronometers

• Nucleic acids or proteins used as “clocks” to measure amount of evolutionary change over time

• Use based on several assumptions– sequences gradually change over time– changes are selectively neutral and

relatively random– amount of change increases linearly

with time

42

• Cytochromes

• Iron-sulfur proteins

• rRNA• ATPase

• Rec A

Evolutionary Chronometers

43

Problems with Molecular Chronometers

• Rate of sequence change can vary over time

• The phenomenon of punctuated equilibria will result in time periods characterized by rapid change

• Different molecules and different parts of molecules can change at different rates

44

Creating Phylogenetic Trees from Molecular Data

• Align sequences• Determine number of positions that are

different• Express difference

– e.g., evolutionary distance

• Use measure of difference to create tree– organisms clustered based on relatedness– parsimony – fewest changes from ancestor to

organism in question

45

Generating Phylogenetic Trees from Homologous Sequences

46

47

The Major Divisions of Life

• Currently held that there are three domains of life– Bacteria– Archaea– Eucarya

• Scientists do not all agree how these domains should be arranged in the “Tree of Life”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

48

Figure 19.14

49

Phylogenetic Trees

Figure 19.13

nodes = taxonomic units(e.g., species orgenes)

rooted tree –has node thatserves ascommonancestor

terminalnodes = livingorganisms