1 Chapter 5 Introduction to Factorial Designs. 2 5.1 Basic Definitions and Principles Study the...

Post on 21-Dec-2015

216 views 1 download

Tags:

Transcript of 1 Chapter 5 Introduction to Factorial Designs. 2 5.1 Basic Definitions and Principles Study the...

1

Chapter 5 Introduction to Factorial Designs

2

5.1 Basic Definitions and Principles

• Study the effects of two or more factors.• Factorial designs• Crossed: factors are arranged in a factorial design• Main effect: the change in response produced by a

change in the level of the factor

3

Definition of a factor effect: The change in the mean response when the factor is changed from low to high

40 52 20 3021

2 230 52 20 40

112 2

52 20 30 401

2 2

A A

B B

A y y

B y y

AB

4

50 12 20 401

2 240 12 20 50

92 2

12 20 40 5029

2 2

A A

B B

A y y

B y y

AB

5

Regression Model & The Associated Response Surface

0 1 1 2 2

12 1 2

1 2

1 2

1 2

The least squares fit is

ˆ 35.5 10.5 5.5

0.5

35.5 10.5 5.5

y x x

x x

y x x

x x

x x

6

The Effect of Interaction on the Response Surface

Suppose that we add an interaction term to the model:

1 2

1 2

ˆ 35.5 10.5 5.5

8

y x x

x x

Interaction is actually a form of curvature

7

• When an interaction is large, the corresponding main effects have little practical meaning.

• A significant interaction will often mask the significance of main effects.

5.2 The Advantage of Factorials

• One-factor-at-a-time desgin • Compute the main effects of factors

A: A+B- - A-B-

B: A-B- - A-B+

Total number of experiments: 6• Interaction effects

A+B-, A-B+ > A-B- => A+B+ is

better???8

9

5.3 The Two-Factor Factorial Design

5.3.1 An Example• a levels for factor A, b levels for factor B and n

replicates• Design a battery: the plate materials (3 levels) v.s.

temperatures (3 levels), and n = 4: 32 factorial design• Two questions:

– What effects do material type and temperature have on the life of the battery?

– Is there a choice of material that would give uniformly long life regardless of temperature?

10

• The data for the Battery Design:

11

• Completely randomized design: a levels of factor A, b levels of factor B, n replicates

12

• Statistical (effects) model:

is an overall mean, i is the effect of the ith level

of the row factor A, j is the effect of the jth

column of column factor B and ( )ij is the

interaction between i and j .

• Testing hypotheses:

1,2,...,

( ) 1,2,...,

1, 2,...,ijk i j ij ijk

i a

y j b

k n

0)( oneleast at : v.s., 0)(:

0 oneleast at : v.s.0:

0 oneleast at : v.s.0:

10

110

110

ijij

jb

ia

HjiH

HH

HH

13

• 5.3.2 Statistical Analysis of the Fixed Effects Model

a

i

b

j

n

kijk

ijij

n

kijkij

ja

ij

n

kijkj

ib

ji

n

kijki

abn

yyyy

n

yyyy

an

yyyy

bn

yyyy

1 1

......

1...

..

1.

..

1..

1..

..

1..

1..

14

2 2 2... .. ... . . ...

1 1 1 1 1

2 2. .. . . ... .

1 1 1 1 1

( ) ( ) ( )

( ) ( )

a b n a b

ijk i ji j k i j

a b a b n

ij i j ijk iji j i j k

y y bn y y an y y

n y y y y y y

breakdown:

1 1 1 ( 1)( 1) ( 1)

T A B AB ESS SS SS SS SS

df

abn a b a b ab n

15

• Mean squares

2

1 1

2

2

1

2

2

1

2

2

))1(

()(

)1)(1(

)(

))1)(1(

()(

1))1/(()(

1))1/(()(

nab

SSEMSE

ba

n

ba

SSEMSE

b

an

bSSEMSE

a

bnaSSEMSE

EE

a

i

b

jij

ABAB

b

jj

BB

a

ii

AA

16

• The ANOVA table:

17

18

Response: Life ANOVA for Selected Factorial ModelAnalysis of variance table [Partial sum of squares]

Sum of Mean FSource Squares DF Square Value Prob > FModel 59416.22 8 7427.03 11.00 < 0.0001A 10683.72 2 5341.86 7.91 0.0020B 39118.72 2 19559.36 28.97 < 0.0001AB 9613.78 4 2403.44 3.56 0.0186Pure E 18230.75 27 675.21C Total 77646.97 35

Std. Dev. 25.98 R-Squared 0.7652Mean 105.53 Adj R-Squared 0.6956C.V. 24.62 Pred R-Squared 0.5826

PRESS 32410.22 Adeq Precision 8.178

Example 5.1

19

DESIGN-EXPERT Plot

Life

X = B: TemperatureY = A: Material

A1 A1A2 A2A3 A3

A: MaterialInteraction Graph

Life

B: Temperature

15 70 125

20

62

104

146

188

2

2

22

2

2

20

• Multiple Comparisons:– Use the methods in Chapter 3.– Since the interaction is significant, fix the

factor B at a specific level and apply Turkey’s test to the means of factor A at this level.

– See Page 174– Compare all ab cells means to determine which

one differ significantly

21

5.3.3 Model Adequacy Checking• Residual analysis: ijijkijkijkijk yyyye ˆ

DESIGN-EXPERT PlotLife

Residual

No

rma

l % p

rob

ab

ility

Normal plot of residuals

-60.75 -34.25 -7.75 18.75 45.25

1

5

10

20

30

50

70

80

90

95

99

DESIGN-EXPERT PlotLife

Predicted

Re

sid

ua

ls

Residuals vs. Predicted

-60.75

-34.25

-7.75

18.75

45.25

49.50 76.06 102.62 129.19 155.75

22

DESIGN-EXPERT PlotLife

Run Number

Re

sid

ua

ls

Residuals vs. Run

-60.75

-34.25

-7.75

18.75

45.25

1 6 11 16 21 26 31 36

23

DESIGN-EXPERT PlotLife

Material

Re

sid

ua

lsResiduals vs. Material

-60.75

-34.25

-7.75

18.75

45.25

1 2 3

DESIGN-EXPERT PlotLife

Temperature

Re

sid

ua

ls

Residuals vs. Temperature

-60.75

-34.25

-7.75

18.75

45.25

1 2 3

24

5.3.4 Estimating the Model Parameters• The model is

• The normal equations:

• Constraints:

ijkijjiijky )(

ijijjiij

j

a

iijj

a

iij

i

b

jij

b

jjii

a

i

b

jij

b

jj

a

ii

ynnnn

ynannan

ynnbnbn

ynanbnabn

)(:)(

)(:

)(:

)(:

11

11

1 111

0,0,01111

b

jij

a

iij

b

jj

a

ii

25

• Estimations:

• The fitted value:

• Choice of sample size: Use OC curves to choose the proper sample size.

yyyy

yy

yy

y

jiijij

jj

ii

ˆ

ˆ

ˆ

ijijjiijk yy ˆˆˆˆ

26

• Consider a two-factor model without interaction:– Table 5.8– The fitted values: yyyy jiijkˆ

• One observation per cell: – The error variance is not estimable because the

two-factor interaction and the error can not be separated.

– Assume no interaction. (Table 5.9)

– Tukey (1949): assume ()ij = rij (Page 183)

– Example 5.2

27

28

5.4 The General Factorial Design

• More than two factors: a levels of factor A, b levels of factor B, c levels of factor C, …, and n replicates.

• Total abc … n observations.• For a fixed effects model, test statistics for each

main effect and interaction may be constructed by dividing the corresponding mean square for effect or interaction by the mean square error.

29

• Degree of freedom:– Main effect: # of levels – 1 – Interaction: the product of the # of degrees of

freedom associated with the individual components of the interaction.

• The three factor analysis of variance model:–

– The ANOVA table (see Table 5.12)– Computing formulas for the sums of squares

(see Page 186)– Example 5.3

ijklijkjkik

ijkjiijkly

)()()(

)(

30

• Example 5.3: Three factors: the percent carbonation (A), the operating pressure (B); the line speed (C)

31

32

33

5.5 Fitting Response Curves and Surfaces• An equation relates the response (y) to the factor

(x).• Useful for interpolation.• Linear regression methods• Example 5.4

– Study how temperatures affects the battery life– Hierarchy principle

– Involve both quantitative and qualitative factors

– This can be accounted for in the analysis to produce regression models for the quantitative factors at each level (or combination of levels) of the qualitative factors

34

A = Material type

B = Linear effect of Temperature

B2 = Quadratic effect of Temperature

AB = Material type – TempLinear

AB2 = Material type - TempQuad

B3 = Cubic effect of Temperature (Aliased)

35

36

37

38

5.6 Blocking in a Factorial Design

• A nuisance factor: blocking• A single replicate of a complete factorial

experiment is run within each block.• Model:

– No interaction between blocks and treatments• ANOVA table (Table 5.20)

ijkkijjiijky )(

39

• Example 5.6: – Two factors: ground clutter and filter type– Nuisance factor: operator

40

41

• Two randomization restrictions: Latin square design

• An example in Page 200.• Model:

• Tables 5.23 and 5.24

ijklljkkjiijkly )(