1 Chapter 12 – Chemical Kinetics 1.Second order Rate Law 2.Zero Order Rate Law 3.Reaction...

Post on 20-Jan-2016

216 views 0 download

Transcript of 1 Chapter 12 – Chemical Kinetics 1.Second order Rate Law 2.Zero Order Rate Law 3.Reaction...

1

Chapter 12 – Chemical Kinetics

1. Second order Rate Law2. Zero Order Rate Law3. Reaction Mechanism4. Model for Chemical Kinetics5. Collision6. Catalysis7. Heterogeneous Catalysis8. Homogeneous Catalysis

2

Second-Order Rate Law• For aA products in a second-order

reaction,

• Integrated rate law is

• Plot of 1/[A] vs t will produce a straight line: slope = k

3

Half-Life of a 2nd-Order Reaction

•t1/2 = half-life of the reaction•k = rate constant•Ao = initial concentration of A

•The half-life is dependent upon the initial concentration.

2

][][ 0AA

021

0 ][

1

2

][1

Akt

A

021 ][

1

][

1

Akt

A

021

00 ][

1

][

1

][

2

Akt

AA

4

Second-Order Rate Law – 12.5

Butadiene reacts to form its dimer

2C4H6(g) C8H12(g)

• Data:

[C4H6] Time

0.01000 0

0.00625 1000

0.00476 1800

0.00370 2800

0.00313 3600

0.00270 4400

0.00241 5200

0.00208 6200

a) Reaction order?b) Value of k?c) Half-life?

1/[C4H6] ln[C4H6]

100 -4.605

160 -5.075

210 -5.348

270 -5.599

320 -5.767

370 -5.915

415 -6.028

481 -6.175

5

Second-Order Rate Law – 12.5

Butadiene reacts to form its dimer

2C4H6(g) C8H12(g)

• Data:

[C4H6] Time

0.01000 0

0.00625 1000

0.00476 1800

0.00370 2800

0.00313 3600

0.00270 4400

0.00241 5200

0.00208 6200

a) Reaction order?

Rate = k[C4H6]2

1/[C4H6] ln[C4H6]

100 -4.605

160 -5.075

210 -5.348

270 -5.599

320 -5.767

370 -5.915

415 -6.028

481 -6.175

6

Second-Order Rate Law – 12.5

Butadiene reacts to form its dimer

2C4H6(g) C8H12(g)

• Data:

[C4H6] Time

0.01000 0

0.00625 1000

0.00476 1800

0.00370 2800

0.00313 3600

0.00270 4400

0.00241 5200

0.00208 6200

b) Value of k?k = slope

1/[C4H6] ln[C4H6]

100 -4.605

160 -5.075

210 -5.348

270 -5.599

320 -5.767

370 -5.915

415 -6.028

481 -6.175

smol

L

s

molLk

.6200

381

)0.6200(

/)100481(

smol

Lk

0614.0

7

Second-Order Rate Law – 12.5

Butadiene reacts to form its dimer

2C4H6(g) C8H12(g)

k = 6.14x10-2 L/mol*s[A]0= 1.000x10-2 mol/L

c) Half-life?

02/1 ][

1

Akt

Lmol

xsmol

Lx

t22

2/1

10000.11014.6

1

sxAk

t 3

02/1 1063.1

][

1

8

Zero-Order Rate Law

• Zero-order reaction the rate is constant.

• Rate does not change with respect to concentration

• Rate = k[A]o = k(1) = k• [A] = -kt + [A]o

• t1/2 = [A]o/2k

9

Reaction Mechanism

The series of steps by which a chemical reaction occurs.

A chemical equation does not tell us how reactants become products - it is a summary of the overall process.

10

Often Used Terms•Intermediate: formed in one step and used up in a subsequent step and so is never seen as a product.•Molecularity: the number of species that must collide to produce the reaction indicated by that step.

•Elementary Step: A reaction whose rate law can be written from its molecularity.

•uni, bi and termolecular

11

Reaction Mechanism

We can define a reaction mechanism.It is a series of elementary steps that must

satisfy two requirements:1. The sum of the elementary steps must give

the overall balanced equation for the reactions.

2. The mechanism must agree with the experimentally determined rate law.

12

Reaction Mechanism The reaction NO2(g) + CO(g) NO(g) + CO2(g)• has many steps in the reaction mechanism.• Rate = k[NO2]2

NO2(g) + NO2(g) NO3(g) + NO(g)NO3(g) + CO(g) NO2(g) + CO2(g)NO2(g) + NO2(g) + NO3(g) + CO(g)

NO3(g) + NO(g) + NO2(g) + CO2(g)Overall reaction:NO2(g) + CO(g) NO(g) + CO2(g)

13

Rate-Determining Step•In a multistep reaction, it is the slowest step. It therefore determines the rate of reaction.

– Slow (rate determing)NO2(g) + NO2(g) NO3(g) + NO(g) – FastNO3(g) + CO(g) NO2(g) + CO2(g)Rate of formation of NO3 = [NO3]/t = K1[NO2]2 Overall rate = [NO3]/t = k1[NO2]2

14

A Summary (continued)

15

Model for Chemical KineticsCollision Model

•Key Idea: Molecules must collide to react.

•However, only a small fraction of collisions produces a reaction. Why?

•Arrhenius: An activation energy must be overcome.

16

Reaction ProgressThe arrangement of atoms found at the top of

the potential energy barrier is call the activated complex or transition state.

17

Reaction ProgressE has no effect on the rate of reaction.Rate depends on the size of the activation

energy Ea.

18

Reaction Progress

A certain minimum energy is required for the molecules to “get over the hill”

At a given temperature only a fraction of the collisions possess enough energy to be effective

- Lower temperature

-Effective collisions - Small

- Higher temperature

-Effective collisions – Increase exponentially

19

Reaction Progress - CollisionsCollisions with Ea = (Total Collisions)e-Ea/RT

Observed rate smaller than the rate of collisions with Ea

Molecular Orientations:

20

Reaction Progress - Collisions

Requirements must satisfied for reactants to collide successfully1. Collisions must involve enough energy to produce the

reaction; Collision energy must equal or exceed the activation energy

2. Relative orientation of reactants must allow for the formation of any new bonds necessary to produce products.

Rate constant: k = zpe-Ea/RT

z = collision frequency R = 8.3145 J/K molp = steric factor (fraction with effective orientation)

21

Catalysis

•Catalyst: A substance that speeds up a reaction without being consumed

•Enzyme: A large molecule (usually a protein) that catalyzes biological reactions.

•Homogeneous catalyst: Present in the same phase as the reacting molecules.

•Heterogeneous catalyst: Present in a different phase than the reacting molecules.

22

Catalysis

Increases the number of effective collisions by providing a reaction pathway with a lower activation energy

23

Heterogeneous Catalysis

Heterogeneous catalysis most often involves gaseous reactant being absorbed on the surface of a solid surface.

Hydrogenation is an example:Changes C=C into saturated H-C-C-H

1. Adsorption to addition of a substance to the surface of another.

2. Migration of absorbed reactants on the surface

3. Reaction of absorbed substances

4. Desorption of products

24

Heterogeneous catalytic ethylene hydrogenation: C2H4 + H2 → C2H6

25

Homogeneous Catalysis

• Reactants and Catalysis are in the same phase. Gas-Gas or Liquid-Liquid

• N2(g) + O2(g) 2NO(g)

• Product of high-temperature combustion when N2 is present. However catalytic in production of ozone

• 2NO(g) + O2(g) 2NO2(g)

• NO2(g) NO(g) + O(g) (light)

• O2(g) + O(g) O3(g)

• 3/2O2(g) O3(g)

26

Homogeneous Catalysis

• In the upper atmosphere, NO has opposite effect.

• 2NO(g) + O3(g) NO2(g) + O2(g)

• O + NO2(g) NO(g) + O2(g)

• O3(g) + O(g) 2O2(g)

• Nitric Oxide is catalytic in production of O2.

• O3 required in upper atmosphere to block uv radiation.

27

Homogeneous Catalysis

• Freon - ChloroFluoroCarbons

• CCl2F2(g) CClF2(g) + Cl(g) Light

• Cl + O3(g) ClO(g) + O2(g)

• O(g) + ClO(g) Cl(g) + O2(g)

• O3(g) + O(g) 2O2(g)

• Cl(g) destroyer of ozone – catalytic in destruction of O3.