!!! Beyond3D - Home | UNAVCO...Beyond3D:"...

Post on 08-Aug-2020

0 views 0 download

Transcript of !!! Beyond3D - Home | UNAVCO...Beyond3D:"...

     Beyond  3D:                          Temporal  and  Biochemical  applica1ons  of  a  Green  Terrestrial  Laser  Scanner    Jan  U.H.  Eitel  a,b,  Lee  A.  Vierling  a,  Troy  S.  Magney  a      aGeospa1al  Laboratory  for  Environmental  Dynamics,  University  of  Idaho,  Moscow,  ID  83844-­‐1135,  USA,  e-­‐mail:  magn0310@vandals.uidaho.edu  (Magney),  jeitel@vandals.uidaho.edu  (Eitel),  leev@uidaho.edu  (Vierling)  bMcCall  Outdoor  Science  School,  University  of  Idaho,  McCall,  ID  83638,  USA      

     Abstract  The  three  dimensional  (3D)  datasets  provided  by  terrestrial  laser  scanners  (TLS)  play  an  important  role  in  expanding  and  improving  our  understanding  of  ecological  processes.  Representa1ve  of  this  progress  made  possible  by  TLS  data,  we  present  one  of  our  studies  that  u1lized  3D  datasets  to  obtain  new  insights  into  water  erosional  processes  (Eitel  et  al.,  2011a).  Besides  providing  3D  point  cloud  informa1on,  TLS  can  also  provide  laser  return  intensity  informa1on  that  can  be  u1lized  to  obtain  informa1on  about  chemical  proper1es  of  natural  surfaces.  We  present  findings  (Eitel  et  al.,  2010  and  2011b)  that  illustrate  the  poten1al  of  laser  return  intensity  for  providing  foliar  chlorophyll  and  nitrogen  content.  We  conclude  that  laser  scanning  should  be  seen  as  a  four  dimensional  (x,y,z,  laser  return  intensity)  rather  than  a  three  dimensional  (x,y,z)  measurement  process.          

 A)  Water  Erosion  (Eitel  et  al.,  2011a)      We  tested  the  effect  of  surface  roughness  effects  on  erosion  processes  in  rangelands.  Local  surface  roughness  (locRMSH)  was  nega1vely  correlated  (r2>0.71,  RMSE<95.97  g  min−1,  and  r2>0.74,  RMSE<90.07  g  min−1,  respec1vely)  with  concentrated  flow  erosion.  Our  results  indicate  that  TLS  is  a  useful  tool  to  enhance  our  current  understanding  of  the  effect  of  surface  roughness  on  overland  flow  erosion  processes.  The  strong  rela1onships  between  locRMSH  and  concentrated  flow  erosion  suggests  further  that  TLS  derived  surface  roughness  allows  more  rigorous  parameteriza1on  of  soil  erosion  models  and  thus  ul1mately  may  lead  to  model  improvements.        B)  Foliar  chlorophyll  (Eitel  et  al.,  2010)      The  objec1ve  of  this  study  was  to  determine  the  poten1al  usefulness  of  TLS  with  a  green  (532  nm)  scanning  laser  to  measure  chlorophyll  a  and  b  content  (Chlab).    The  TLS  measurements  were  obtained  from  saplings  of  two  tree  species  (Quercus  macrocarpa  and  Acer  saccharum).  The  green  laser  return  intensity  value  was  strongly  correlated  with  wet-­‐  chemically  determined  Chlab  (r2=0.77).  Our  results  show  that  green  scanning  terrestrial  laser  scanners  are  suitable  for  measuring  foliar  Chlab  in  simple  canopies  of  small  broadleaved  plants.       Literature  Cited  

 Coops,  N.C.,  Hilker,  T.,  Hall,  F.G.,  Nichol,  C.J.  and  Drolet,  G.G.,  2010.  Es1ma1on  of  light-­‐use  efficiency  of  terrestrial  ecosystems  from  space:  A  status  report.  BioScience,  60(10).    Eitel,  J.U.H.,  Williams,  C.J.,  Vierling,  L.A.,  Al-­‐Hamdan,  O.Z.,  Pierson,  F.B.,          2011a.  Suitability  of  terrestrial  laser  scanning  for  studying  surface  roughness  effects  on  concentrated  flow  erosion  processes  in  rangelands.  Catena,  87,  398-­‐407.    Eitel,  J.U.H.,  Vierling,  L.A.,  Long,  D.S.,  Hunt,  E.R.,  2011b.  Early  season  remote  sensing  of  wheat  nitrogen  status  using  a  green  scanning  laser.  Agricultural  and  Forest  Meteorology  151,  1338-­‐1345.      Eitel,  J.U.H.,  Vierling,  L.A.,  Long,  D.S.,  2010.  Simultaneous  measurements  of  plant  structure  and  chlorophyll  content  in  broadleaf  saplings  with  a  terrestrial  laser  scanner.  Remote  Sensing  of  Environment  114,  2229-­‐2237.    Gamon,  J.A.,  Penuelas,  J.  and  Field,  C.B.,  1992.  A  narrow-­‐waveband  spectral  index  that  tracks  diurnal  changes  in  photosynthe1c  efficiency.  Remote  Sensing  of  Environment,  41:  35-­‐44.    Hilker,  T.  Coops,  N.C.,  Hall,  F.G.,  Black,  T.A.,  Wulder,  M.A.,  Nesic,  Z.,  and  P.  Krishnan.,  2008.  Separa1ng  physiologically  and  direc1onally  induced  changes  in  PRI  using  BRDF  models.  Remote  Sensing  of  Environment,  2777-­‐2788.  

 Acknowledgements      This  research  was  supported  by  USDA-­‐NIFA  Award  No.  2011-­‐67003-­‐3034,  the  Research  Grant  Award  No.L08AC14585  by  the  Bureau  of  Land  Management,  a  specific  coopera1ve  agreement  between  the  University  of  Idaho  and  the  USDA-­‐ARS,  and  the  University  of  Idaho  Harold  Heady  professorship.  Funding  to  acquire  the  TLS  was  provided  by  the  University  of  Idaho,  Idaho  NSF  EPSCoR,  and  by  the  Na1onal  Science  Founda1on  under  ward  number  EPS-­‐0814387.          

C)  Foliar  nitrogen  (Eitel  et  al.,  2011b)      We  examined  the  ability  to  quan1fy  foliar  nitrogen  (N)  status  of  spring  wheat  (Tri1cum  aes1vum  L.)  using  a  green  (532  nm)  terrestrial  laser  scanner  during  an  early  stem  extension  growth  stage  (Zadoks  growth  stage  3.2).  Laser  data  were  processed  by  (1)  removing  soil  background  returns  based  on  laser-­‐determined  height  informa1on,  (2)  standardizing  green  laser  intensity  based  on  white-­‐reference  panel  readings,  and  (3)  filtering  noisy  laser  returns  from  leaf  edges  based  on  a  laser  return  intensity  threshold  value.  The  return  intensity  of  the  reflected  green  laser  light  more  accurately  (r2  =  0.68,  RMSE  =  0.30  µg  g−1)  predicted  foliar  N  concentra1on  than  conven1onal  chlorophyll  meter  readings  (r2  =  0.36,  RMSE  =  0.41  µg  g−1)  and  spectral  indices  measured  by  a  ground  op1cal  on-­‐the-­‐go  sensor  (r2  <  0.41,  RMSE  >  0.39  µg  g−1).    

D)  Current:  Remote  Mapping  of  PhotosyntheKc  Efficiency  /  Xanthophyll  Cycle  Responses    

During  1mes  when  leaves  are  under  some  environmental  stress  (such  as  that  resul1ng  from  water  or  heat  stress,  a  situa1on  that  might  increase  under  global  environmental  change  scenarios),  the  light  that  normally  would  go  towards  photosynthesis  is  instead  dissipated  by  the  leaf  through  the  xanthophyll  cycle.  Consequently,  the  photosynthe1c  light  use  efficiency  (and  thus  plant  carbon  absorp1on)  decreases  in  order  to  protect  the  photosynthe1c  apparatus  of  the  leaf.  Importantly,  with  decreasing  photosynthe1c  efficiency,  the  rela1ve  concentra1on  of  xanthophyll  pigments  change,  which  leads  to  a  decreasing  reflectance  at  531  nm  (Gamon  et  al.,  1992;  Hilker  et  al.,  2008;  Coops  et  al.,  2010).  Since  the  532  nm  laser  coincides  closely  with  the  531  nm  detec1on  band  found  to  be  useful  in  passive  remote  sensing  studies  of  vegeta1on  physiology,  we  wish  to  test  whether  varia1on  in  reflected  laser  intensity  in  this  band  can  track  changes  in  xanthophyll  pigment  ac1vity    

Conclusion  The  above  studies  illustrate  the  poten1al  of  TLS  datasets  for  studying  ecological  processes.  Considering  the  poten1al  of  laser  return  intensity  to  provide  chemical  proper1es  of  natural  surfaces  should  encourage  the  scien1fic  community  to  use  laser  scanning  as  a  four  dimensional  (x,y,z,  laser  return  intensity)  rather  than  just  a  three  dimensional  (x,y,z)  measurement  process  with  myriad  applica1ons  in  a  wide  variety  of  different  disciplines.    

 

Gamon et al., 1992

magn0310-13Oct2011-22756